# 各項資料目錄 ## 專案文件 |名稱|連結|簡述| |-|-|-| |Refined Proposal of GDSC|[link](https://hackmd.io/eC1DGkDlSZqh-VImbNKsDQ?view)|112下學期專案進行大綱| |暑期workshop影片|[link](https://www.youtube.com/playlist?list=PLkB0SHqRKg-3fc--5gT0OAFpnT1bpHxco)|包含4個項目:regularization, SVM, 神經網路, Diffusion model| |暑期workshop簡報&code|[link](https://drive.google.com/drive/folders/1ltt6Dl--FDB9Lh4lQ69jtuE3mEf8jpl5?usp=drive_link)|| ## 學習資源 |名稱|連結|簡述| |-|-|-| |C229|[link](https://cs229.stanford.edu/)|stanford的課程| |機器學習基石|[link](https://www.youtube.com/playlist?list=PLXVfgk9fNX2I7tB6oIINGBmW50rrmFTqf)|基礎~regularization| |機器學習技法|[link](https://www.youtube.com/playlist?list=PLXVfgk9fNX2IQOYPmqjqWsNUFl2kpk1U2)|SVM~| |SVD分解|[link](https://www.youtube.com/watch?v=OIe48iAqh8E)|把任意矩陣拆成三個矩陣,中間是對角矩陣的技術| |Eigenvalue Decomposition|[link1](https://www.youtube.com/watch?v=KTKAp9Q3yWg), [link2](https://www.youtube.com/watch?v=DzqE7tj7eIM), [link3](https://www.youtube.com/watch?v=U8R54zOTVLw)|| |liner regression|[link1](https://chih-sheng-huang821.medium.com/線性回歸-linear-regression-3a271a7453e), [link2](https://www.youtube.com/watch?v=nk2CQITm_eo)|| |logistic regression|[link](https://www.youtube.com/watch?v=yIYKR4sgzI8), [link2](https://web.stanford.edu/~jurafsky/slp3/5.pdf)|| ## 論文 |名稱|連結|先備知識|簡述| |-|-|-|-| |CVPR paper with code(ref)|[link](https://github.com/amusi/CVPR2024-Papers-with-Code/tree/master)|0|教你怎麼復現論文實驗,並提交code的開源項目| |U-Net|[link](https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/)|CNN、FCN|FCN的變體,可以用更少的資料做訓練,並有localization的功能| |Attention is all-you-need (Transformer)|[link](https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf)||| |ResNet|[link](https://arxiv.org/abs/1512.03385)||| |Diffusion Model|[link](https://arxiv.org/abs/2006.11239)||| |GAN|[link](https://arxiv.org/abs/1406.2661)||| |MobileNet|[link](https://arxiv.org/abs/1704.04861)||| ## 論文筆記、簡報 |名稱|連結|簡述| |-|-|-| |論文模板|[link](https://docs.google.com/presentation/d/1lrv1o-LnYbQz0g5OJB_mJIxwS_quef5hpiisQaX-s_E/edit#slide=id.g26b410a0b6a_0_140)|提供 by leader 許瑋哲| |U-net共筆|[link](https://hackmd.io/@GDSC-lets-attack-machine-learning/S1WflS1Ca)|| |U-net簡報|[link](https://docs.google.com/presentation/d/1q_9rT920iSaEcAM_smHaGLRzehKKaRKvQKYseTMm9aM/edit?usp=sharing)|by 承志,侑哲| |Transformer共筆|[link](https://hackmd.io/GhSOXL1vRzqzwKd7khf2ow)|| |Transformer簡報|[link](https://docs.google.com/presentation/d/1yDRqaF2o7k-sYzHIXrwnprAXkB32zRRf4Xy3KrC6GR8/edit?usp=sharing)|by 子萱,承志,侑哲| |GAN共筆|[link](https://hackmd.io/@GDSC-lets-attack-machine-learning/BkEeh-d06)|| |GAN簡報|[link](https://docs.google.com/presentation/d/1NsAhaRysr5NT75AOp-jrjfx37bMu44IUX0Xd9HfMJnw/edit#slide=id.g2ceede511ef_0_75)|by 子萱,承志,侑哲| |MobileNet共筆|[link](https://hackmd.io/@GDSC-lets-attack-machine-learning/BkVKElU-0)|| |MobileNet簡報|[link](https://docs.google.com/presentation/d/1OUU-TYKVIStKy79aMmR2LCpE6qTLt6MISgLNMvPrikw/edit?usp=sharing)|by 琍淩| ## 其他 |名稱|連結|簡述| |-|-|-| |YouZhe的理論知識筆記|[link](https://hackmd.io/@9UfXRWPzS62YaxdR7uwZ0Q/HJTzo_6bT)|我的一些理論知識的筆記,目前涵蓋regularization、SVM|