# Integral Notes ## Derivative and Integral Tables | $f(x)$ | $\frac{d}{dx}f(x)$ | $\int f(x) dx$ | |:----------:|:--------------------:|:-----------------------:| | $x^n$ | $nx^{x-1}$ | $\frac{x^{x+1}}{x+1}+c$ | | $\frac 1x$ | $\frac{-1}{x^2}$ | $\ln(\lvert x\rvert)+c$ | | $\sqrt{x}$ | $\frac 1{2\sqrt{x}}$ | $\frac{2\sqrt{x^3}}3+c$ | ### Basic trygonometric functions | $f(x)$ | $\frac{d}{dx}f(x)$ | $\int f(x) dx$ | |:----------------:|:------------------:|:-----------------------:| | $\sin(x)$ | $\cos(x)$ | $-\cos(x)+c$ | | $\cos(x)$ | $-\sin(x)$ | $\sin(x)+c$ | ### Other trygonometric functions $\tan(x)=\frac {\sin(x)}{\cos(x)}$ $\cot(x)=\frac 1{\tan(x)}=\frac {cos(x)}{\sin(x)}$ $\sec(x)=\frac 1{\cos(x)}$ $\csc(x)=\frac 1{\sin(x)}$ | $f(x)$ | $\frac{d}{dx}f(x)$ | $\int f(x) dx$ | |:----------------:|:------------------:|:-----------------------:| | $\tan(x)$ | $\sec^2(x)$ | $-\log\lvert\cos x\rvert+c$ | | $\sec^2(x)$ | | $\tan(x)+c$ | | $\cot(x)$ | $-\csc^2(x)$ | | | $\csc^2(x)$ | | $\cot(x)+c$ | | $\sec(x)$ | $\sec(x)\tan(x)$ | | | $\sec(x)\tan(x)$ | | $\sec(x)+c$ | | $\csc(x)$ | $-\csc(x)\cot(x)$ | | | $\csc(x)\cot(x)$ | | $-\csc(x)+c$ | ## Properties of Integrals 1. $\int c\cdot f(x)\,dx = c\cdot\int f(x)\,dx$ 2. $\int f(x)\pm g(x)\,dx = \int f(x)\,dx\pm\int g(x)\,dx$ ## Integration by Substitution #### Steps: 1. Pick "u" so the integral is easier. - usualy it's the inside of something - the derivative of "u" must be in $\int$ (disregard constants) 2. Transform $\int x\,dx \to \int u\,du$ 3. Do integral 4. Translate back to "x" ##### example: $\int(x^2+1)^{50}\cdot 2x\,dx$ Let: $u = x^2 + 1$ Then: $du = 2x\,dx \therefore dx = \frac {du}{2x}$ Now we substitute $u$ and $du$: $\require{cancel}\int u^{50}\cdot \cancel{2x}\cdot\frac{du}{\cancel{2x}} = \int u^{50}\,du$ So now we can easily solve integral: $\int u^{50}\,du = \frac {u^{51}}{51} + c$ Then we just need to substitute $x$ back: $\frac {u^{51}}{51} + c = \frac {(x^2+1)^{51}}{51} + c$ And we're done. ## Integration by Parts $\int u\,dv = u\,v - \int v\,du$ ###### This method is good for solving intgrals with exponential nad trygonometic functions. ##### example: $\int e^x\sin(x)\,dx$ Let: $v = e^x \qquad dv = e^x\,dx$ $u = \sin(x) \qquad du = -\cos(x)\,dx$ Then: $\int e^x\sin(x)\,dx = e^x\sin(x) - \int e^x(-\cos(x))\,dx = e^x\sin(x) + \int e^x\cos(x)\,dx$ Then lets do it again: $v = e^x \qquad dv = e^x\,dx$ $u = \cos(x) \qquad du = \sin(x)\,dx$ Then: $\int e^x\sin(x)\,dx = e^x\sin(x) + \int e^x\cos(x)\,dx = e^x\sin(x) + e^x\cos(x) - \int e^x\sin(x)\,dx$ So, we get: $\int e^x\sin(x)\,dx = e^x\sin(x) + e^x\cos(x) - \int e^x\sin(x)\,dx$ We can add $\int e^x\sin(x)\,dx$ to both sides: $2*\int e^x\sin(x)\,dx = e^x\sin(x) + e^x\cos(x)$ And divide by $2$, and we get answer: $\int e^x\sin(x)\,dx = \frac{e^x\sin(x) + e^x\cos(x)}{2}$ ## Integration of Rational Functions $P(x) = a_nx^n + a_{n-1}x^{n-1} +\cdots+a_1x+a_0$ $Q(x) = b_mx^m + b_{m-1}x^{m-1} +\cdots+b_1x+b_0$ $\int\frac {P(x)}{Q(x)}$