# A Neurocomputational Model of the N400 and the P600 in Language Processing #### Harm Brouwer, Matthew W. Crocker, Noortje J. Venhuizen, John C. J. Hoeks ##### Cognitive Science 41 (2017, Suppl. 6) 1318–1352 --- # Introduction **N400 and P600**: - **N400** and **P600** are two key ERP components in language comprehension. :::spoiler **N400**: - Negative deflection peaking around 400 ms. - Sensitive to semantic anomalies. - Example: “He spread his warm bread with socks,” relative to “butter” (Kutas & Hillyard, 1980). ::: :::spoiler **P600**: - Positive deflection peaking around 600 ms. - Often associated with syntactic processing. - Example: “The spoilt child throw . . .,” relative to “throws” (Hagoort, Brown, & Groothusen, 1993). ::: --- ## Semantic P600 Effect :::danger - Some grammatically correct but semantically odd sentences (e.g., “The javelin has the athletes thrown”) do **not** elicit the expected N400. - Instead, they trigger a **P600** response. - This phenomenon is known as the **Semantic Illusion** or **Semantic P600 Effect**. ::: --- ## Present Paper :::success - Proposes a **single-stream model** – the **Retrieval–Integration (RI) account** – to explain Semantic P600 effects. - Implements the model as a neurocomputational (neural network) model. - Simulates emergent N400 and P600 amplitudes during language processing. ::: --- ## Recap: Challenge to Traditional ERP Views :::spoiler **Semantic Illusion/P600 Effect:** - Semantically odd, syntactically correct sentences elicit P600, *not* N400. ::: :::spoiler **Multi-Stream Models:** - Assume separate/parallel semantic and syntactic processing streams. - Semantic stream finds *a* meaning, avoiding N400. - Conflict with syntactic stream causes P600. ::: :::spoiler **Critique:** - These models fail to explain: - Biphasic N400/P600 effects - Isolated P600 effects in discourse. ![image](https://hackmd.io/_uploads/BJU7Qknake.png) ![image](https://hackmd.io/_uploads/SJrEm1np1l.png) ::: --- # Retrieval–Integration (RI) Account :::info - **N400:** Reflects the **retrieval** of a word’s meaning. - If context pre-activates lexical-semantic features, retrieval is easier -> **smaller N400**. - **P600:** Reflects the integration of the retrieved meaning into the unfolding sentence interpretation. - Difficult integration leads to a **larger P600**. - **Key Idea:** Language processing occurs in N400/P600 (**RI**) cycles. ::: --- # Neurocomputational Model Overview - Based on an extended [**Simple Recurrent Network (SRN)**](https://hackmd.io/@Fd6wOjYES3OJ9NKSpvQ8wQ/SyH7lnsTJe) . - Processes language in **RI cycles**: - **Retrieval:** Maps (word form, utterance context) → word meaning. - **Integration:** Maps (word meaning, utterance context) → updated utterance representation. --- ![image](https://hackmd.io/_uploads/HyEOKjsp1g.png) *Figure: a schematic overview of the model* --- --- ## Model Architecture :::spoiler **Two Core Modules:** - **Retrieval :** Maps word forms to word meaning (?). - **Integration :** Combines retrieved meanings into a utterence representation. ::: :::spoiler **Key Layers:** - **INPUT:** Represents the current word (localist one-hot encoding). - **RETRIEVAL:** Hidden layer for semantic retrieval. - **RETRIEVAL_OUTPUT:** 100-dimensional binary word meaning (via COALS). - **INTEGRATION:** Hidden layer for integrating word meaning. - **INTEGRATION_OUTPUT:** 300-dimensional utterance representation (split into agent, action, patient). - **INTEGRATION_CONTEXT:** Copies previous INTEGRATION state to provide context. ::: --- --- ### More Details About Neuron Network [How the neurocomputational model actually works](/s-3GobRNT2aB5u7kOnwpxw) --- ## Representations :::spoiler **Word Form Representations (Input layer):** - 35-dimensional one-hot vectors (20 nouns + 10 verbs + 2 auxiliary verbs + 2 determiners + 1 preposition = 35 words) ::: :::spoiler **Word Meaning Representations (Retrieval output):** - 100-dimensional binary vectors (derived via COALS from Dutch newspaper texts). ::: :::spoiler **Utterance Representations:** - 300-dimensional vectors (three slots for agent, action, and patient). ::: --- --- ## (De)constructing the Integration Module: :::spoiler **Objective:** - Combine retrieved word meaning with prior context to update the utterance representation. ::: :::spoiler **Integration Module Structure:** - SRN with layers: **RETRIEVAL_OUTPUT** (input), **INTEGRATION** (hidden), **INTEGRATION_OUTPUT** (output), and **INTEGRATION_CONTEXT** (context). ::: :::spoiler **Function:** - `integrate(word meaning, utterance context) → utterance representation` ::: ```mermaid graph LR B(RETRIEVAL_OUTPUT); D[INTEGRATION_CONTEXT] -- "utterance context" --> E(INTEGRATION); B -- "word meaning" --> E; E --> F(INTEGRATION_OUTPUT); E -."Copy".-> D; F --> G[Utterance Representation]; subgraph "Integration Module" F; E; B; end style B fill:#f9f,stroke:#333,stroke-width:2px; style E fill:#ccf,stroke:#333,stroke-width:2px; style F fill:#f9c,stroke:#333,stroke-width:2px; style D fill:#efe,stroke:#333,stroke-width:2px; style G fill:#cfc,stroke:#333,stroke-width:2px; ``` --- ## Training the Integration Module * :::spoiler **Training Objective:** To enable the module to map word meanings within a context to an overall utterance representation. ::: * :::spoiler **Training Data:** - **Sentence Templates:** - **Active:** `de [AGENT] heeft het/de [PATIENT] [ACTION]` - **Passive:** `het/de [PATIENT] werd door de [AGENT] [ACTION]` - **Data Composition:** - 16,000 training items per simulation (50% active, 50% passive). - Stereotypical combinations occur more frequently than non-stereotypical ones. * :::spoiler **Training Procedure:** * Bounded gradient descent * The model updates its weights after processing 100 items to minimize mean-squared error (MSE). * The learning rate is gradually reduced during training. * A "zero error radius" is used to prevent minor errors from affecting the learning process. * :::spoiler **Evaluation:** * The model's comprehension is evaluated using a **cosine similarity** to compare the output vector to target vectors. * Performance is measured by checking if the output is more similar to the correct target than to any other. :::success The **Integration module** achieves 100% correct comprehension in testing. ::: --- ## (De)constructing the Retrieval Module - **Goal:** To create a Retrieval Module that can map a word's form to its meaning, taking into account the surrounding context - **Retrieval Module Structure:** SRN with layers: **INPUT** (input), **RETRIEVAL** (hidden), **RETRIEVAL_OUTPUT** (output), and **INTEGRATION_CONTEXT** (context_input). - **Function:** `retrieve(word form, utterance context) → word meaning` ```mermaid graph LR A[INPUT] -->|word form| B[RETRIEVAL] D[INTEGRATION_CONTEXT] B --> C[RETRIEVAL_OUTPUT] D -->|utterence context| B E[utterence representation] subgraph G[Overall model] subgraph "Retrieval Module" A B C D end subgraph "Integration Module (Fixed)" F[INTEGRATION] end end C -->|Activated word meaning| F F --> E style A fill:#cff,stroke:#333,stroke-width:2px; style G color:#f66, padding-left: 5 style B fill:#f9f,stroke:#333,stroke-width:2px; style C fill:#ff9,stroke:#333,stroke-width:2px; style D fill:#cff,stroke:#333,stroke-width:2px; style E fill:#fdd,stroke:#333,stroke-width:2px; style F fill:#ccf,stroke:#333,stroke-width:2px; ``` --- ## **Training Procedure:** :::spoiler **Strategy**: - Train the Retrieval module as part of the overall network by **freezing** Integration weights, forcing context-sensitive retrieval. ::: :::spoiler **Why Not a Simple Approach?**: - If the Retrieval Module is trained independently, the context becomes just noise, and the module learns to ignore it. ::: :::spoiler **Deterministic Integration Module**: - After the Integration Module is trained, its weights are "frozen." This makes the Integration Module behave deterministically. ::: ::::spoiler **Outcome** :::success Achieves 100% comprehension. Word meanings from the Retrieval Module align with Integration Module representations. High values (cosmodel1 = .951, cosmodel2 = .961) confirm the model's effectiveness. ::: :::: --- >[!Tip]Congratulations! we have arrived at the full model :3 >[!Tip]Take a break:coffee: :+1: --- ## Processing in the model :::spoiler **Model's Sentence Processing** - **Word-by-word processing** using [Hoeks et al. (2004)](#cite:a8ca46b171467ceb2d7652fbfb67fe701ad86092) examples. - **Example (Hoeks et al., 2004):** - **Control (Passive):** “De maaltijd werd door de kok bereid” (The meal was prepared by the cook) - **Reversal (Active):** “De maaltijd heeft de kok bereid” (The meal has the cook prepared) - **Mismatch (Passive):** “De maaltijd werd door de kok gezongen” (The meal was by the cook sung) - **Mismatch (Active):** “De maaltijd heeft de kok gezongen” (The meal has the cook sung) - Anticipates sentence meaning after the first noun. ::: :::spoiler **Active vs. Passive** - **Passive:** Confirms predictions.(Since the first two words are "the meal") - **Active:** Revises interpretation. - Differentially anticipates active/passive meanings by the **auxiliary verb**. ::: :::spoiler **Layer Activity & Context** - **Integration** layer's internal representation differs between active/passive. - Contextual inputs to **Retrieval** & **Integration** layers also differ. - Cosine similarity highlights activation differences (e.g., "kok" differs with cos = 0.569). ::: :::spoiler **Context Modulation** - Activity patterns in **Retrieval** & **Integration** layers are context-dependent. - Even same final word shows different activations in active vs. passive. - Context effect NOT reflected in **RETRIEVAL_OUTPUT** layer. (**Interesting !**) ::: :::spoiler **Different Endings** - Varying sentence-final words modulate **Retrieval** & **Integration** layer activations. ::: :::spoiler **Layer Functionality** - **Retrieval** and **Integration** layers implement *retrieve* and *integrate* functions. ::: <font color="#289699">**kok(cook)**</font> <font color="#75C7CB">**maaltijd(meal)**</font> <font color="#E82C88">**bereid(prepared)**</font> <font color="#F29DC4">**gezongen(sung)**</font> <font color="#F49728">**maaltijd(meal)**</font> <font color="#FECE60">**kok(cook)**</font> ![image](https://hackmd.io/_uploads/SJnakg3a1g.png) --- ## Linking Hypotheses: RI Account & Neurocomputational Model :::spoiler **N400 - Lexical Retrieval Effort** - **Core:** N400 amplitude indexes **processing** load to activate word's conceptual knowledge, not mismatch itself - **Mechanism:** Change in semantic memory state due to new word. High amplitude = unexpected word = large state change. - **Model Layer:** RETRIEVAL layer captures this retrieval process. - **Formula:** $$N400 = 1 - cos(retrieval_t, retrieval_{t-1}) $$ ::: :::spoiler **P600 - Utterance Integration Effort** - **Core:** P600 amplitude reflects effort to construct/update utterance interpretation. - **Mechanism:** Reflects difficulty of integrating word meaning into current context. - **Model Layer:** INTEGRATION layer handles meaning integration. - **Formula:** $$ P600 = 1 - cos(integration_t, integration_{t-1}) $$ ::: :::info **Key Takeaways** - Both N400 & P600 are emergent properties of network activity changes. - Cosine dissimilarity provides a quantifiable link to ERP amplitudes. - RI account explains both semantic and syntactic effects within a single framework. ::: --- # Simulation Results: N400 & P600 Effects :::spoiler **Goal** - The model aimed to simulate human brain responses (N400 and P600) during language comprehension, especially **Semantic P600** and **biphasic N400/P600** effects. ::: :::spoiler **Method** - The researchers generated two set of 40 sentences, each set included these four types of sentences: - **Control (Passive)**、**Reversal (Active)**、**Mismatch (Passive)**、**Mismatch (Acive)** - The model processed these sentences, and researchers measured its **N400** and **P600** responses. (cosine dissimilarities) ::: :::spoiler **Results** - :::spoiler **N400:** - The model showed N400 effects for **Mismatch** sentences. - No N400 for **Semantic illusion** sentences, matching Hoeks et al. (2004)![image](https://hackmd.io/_uploads/SJWo7Q3pkl.png) - :::spoiler **P600:** - The model showed **P600 effects** for all anomalous sentences. - Ordering of P600 effects slightly differed from human data (possible N400/P600 overlap). ![image](https://hackmd.io/_uploads/Hy71Nm3T1e.png) ::: :::success **Conclusion** - The model successfully captured key aspects of human **sentence processing** related to **semantic anomalies** and **brain responses**. ::: --- --- # Discussion ## **Neurocomputational Model of N400 and P600** :::spoiler **Overview** - This model supports the **Retrieval-Integration (RI) account** of N400 and P600 in language processing. - Captures **traditional N400/P600 effects** and **Semantic P600** effects. - Demonstrates that **N400 reflects context-driven retrieval**, while **P600 represents integration difficulty**. ::: :::spoiler **Key Findings** - **N400 effects** are **context-dependent** and arise from processing **critical words**, not pre-critical material. - Confirms that a **single-stream model** can explain both **N400 and P600** without separate semantic pathways. - The model uniquely accounts for **sentence-level P600 effects**, which previous models did not address. ::: --- ## **Context Sensitivity, Model Comparisons, and Future Directions** :::spoiler **N400 and Context Sensitivity** - **Context primes words**, influencing **N400 amplitude**. - **Role-reversed sentences** show **increased N400** due to unexpected thematic roles. ::: :::spoiler **Comparison with Other Models** - Prior models focus on either **N400** (Laszlo & Plaut, Rabovsky & McRae) or **P600** (Crocker et al.). - This model **integrates both effects**, making it **more comprehensive**. ::: :::spoiler **Future Directions** - Expanding the model to **syntactic violations** (e.g., **agreement errors, garden-path sentences**). - Developing **richer representations** for **pragmatic P600 effects**. - Combining the P600 estimate at **timestep t** with the N400 estimate at **timestep t + 1**. ::: --- ## **Cortical Implementation of the Retrieval-Integration Model** ![image](https://hackmd.io/_uploads/HyIedXnTJg.png) :::spoiler **Key Components & Brain Areas** - **Retrieval Module**: Left posterior middle temporal gyrus (**lpMTG, BA 21**) - Mediates **lexical retrieval** - Generates the **N400** component - **Integration Module**: Left inferior frontal gyrus (**lIFG, BA 44/45/47**) - Supports **sentence integration** - Generates the **P600** component ::: :::spoiler **Neural Evidence** - **Neuroimaging & lesion studies** confirm **lpMTG** involvement in **word recognition & retrieval**. - **lIFG** supports **complex language processing**, including **syntax, semantics, & memory**. - **The author:** a variety of processes involved in the (re)composition of an utterance representation ::: --- ## **Neural Pathways & Processing Cycle** :::spoiler **Information Flow** 1. **Word Input**: Enters via **auditory (spoken) or visual (written) cortex**. 2. **Retrieval**: **lpMTG** retrieves word meaning (**triggers N400**). 3. **Integration**: Meaning sent to **lIFG** for **sentence integration** (**triggers P600**). 4. **Updating**: Integrated meaning sent back to **lpMTG** to **anticipate upcoming words**. ::: :::spoiler **Pathways** - **Dorsal & Ventral Pathways**: Enable **bidirectional communication** between **lpMTG & lIFG**. - Supports the **Retrieval-Integration (RI) processing cycle**, aligning with **neurocomputational models**. ::: --- <style> /* Styling for better readability */ h1, h2, h3 { color: #2E86C1; font-family: Arial, sans-serif; border-bottom: 2px solid #ddd; padding-bottom: 5px; } h1 { font-size: 28px; } h2 { font-size: 24px; } h3 { font-size: 20px; } p { font-size: 16px; line-height: 1.6; } code { background-color: #f4f4f4; padding: 3px 5px; border-radius: 4px; } blockquote { font-style: italic; color: #7B7D7D; border-left: 4px solid #3498DB; padding-left: 10px; } </style>
{"title":"**A Neurocomputational Model of the N400 and the P600 in Language Processing**","description":"In neurophysiological studies of language comprehension, the N400 and P600 ERP components play a core role.","contributors":"[{\"id\":\"15deb03a-3604-4b73-89f4-d292a6f43cc1\",\"add\":49072,\"del\":31769}]"}
Expand menu