# Capstone Project Presentation
---
## Fruit Classification
<br>
Student: Nguyen Anh Tu
Instructors: Huy Le, Ha V.N, Tung Cao, Hung Ngo
Course: Machine Learning for AI 2022
Le Hong Phong Highschool for the Gifted, HCMC
---

For project demo, please visit:
https://huggingface.co/spaces/Devaholic/fruit-demo
---
## Task description $T$
- <p class="fragment">Classify fruits.</p>
- <p class="fragment">Input: An image of 1 type of fruit.</p>
- <p class="fragment">Output: Predicted label.</p>
---
### Quick walk-through the dataset (Experience $E$)
<br>
- [Fruits 360 Dataset](https://www.kaggle.com/datasets/moltean/fruits) on Kaggle.
- Over 90000 images of more than 100 types of fruits and vegetables.
- Each image is an image of **ONE** type of fruits and vegetables.
---
### Model Architecture
<br>
- Inception Architecture with InceptionV3 pre-trained model.
- Fully connected layer with 512 units.
- Output layer with 131 units and Softmax activation for 131 different classes.
---
### Inception Architecture
<br>
<div class="r-stack">
<img class="fragment fade-out" data-fragment-index="0" src="https://i.imgur.com/njDb6Ny.png" width="600" />
<img class="fragment current-visible" data-fragment-index="0" src="https://i.imgur.com/Nd8oQx4.png" width="600" />
</div>
---
### Accuracy & Loss
|Models|Validation Accuracy|Validation Loss|
|------|-------------------|---------------|
|No pre-trained model used|0.9781|0.1177|
|Model 1 with InceptionV3|0.9814|0.0842|
|Model 2 with InceptionV3|0.9853|0.0720|
|Model 3 with InceptionV3|0.9940|0.0318|
---
<div style="display: flex">
<image src="https://i.imgur.com/K7kMWqE.png"></image>
<image src="https://i.imgur.com/Zltv5xj.png"></image>
</div>
---
### Algorithm for training
<br>
- Train with 100 epochs.
- Use EarlyStopping to optimize training time.
---
## Conclusion
- High accuracy score but cannot generalize well.
- Main objectives is to improve the generalization of the model.
---
## Lesson learned
- <p class="fragment">How to apply pre-trained model.</p>
- <p class="fragment">Pre-processing images</p>
- <p class="fragment">How to design a project structure.</p>
---
## Further work for improvements
- Automatically (Web scraping)/ Manually collect more data.
- Find other datasets.
- Try tuning hyper-parameters.
- Try other pre-trained models.
---
# Thank you for listening
{"metaMigratedAt":"2023-06-17T02:39:28.595Z","metaMigratedFrom":"YAML","title":"Capstone Project Presentation","breaks":true,"slideOptions":"{\"margin\":0.1,\"minScale\":0.2,\"maxScale\":1.5}","contributors":"[{\"id\":\"ff3c58aa-370f-4a39-bf10-d7949202d23b\",\"add\":8,\"del\":47},{\"id\":\"152596a8-6f80-433d-9efd-ad7a07ccfdec\",\"add\":5467,\"del\":2888}]"}