# 量子閘(Quantum Gate)基礎(一) 有關Bra-Ket向量乘積的基礎可以先參考[量子計算狄拉克表示法(Dirac's Notation)](https://hackmd.io/@EyYtbwdYQni5VVJSJxfpgA/SkpaX-j1Wg) ## 矩陣算符 Operator 對一個量子狀態進行轉換例如將$|a\rangle$ 轉換為 $|b\rangle$ 可以透過一個算子(Operator)來達成,即下列形式 $$ \hat{U}|a\rangle=|b\rangle $$ 將這樣的轉換概念導入量子線路中,將此轉換對比古典線路中的邏輯閘概念,可以設計各種算子或稱量子閘(quantum gate)來轉換量子態,量子閘通常是一矩陣形式,且必須是unitary(么正矩陣),也就是必須滿足 $$ \begin{align} UU^{\dagger}=I \\ U^{\dagger}=U^{-1} \end{align} $$ 這是因為在量子計算中,量子態用波函數(或狀態向量)描述,其模(Norm)平方總和必須等於 1: $$\|\psi\|^2 = \sum_i |c_i|^2 = 1$$ 這代表總機率為 1。 量子閘的作用是對量子態進行可逆演化。如果操作不是 unitary,會導致: - 機率總和 ≠ 1(可能 >1 或 <1) - 違反量子力學的機率詮釋 另外如果矩陣 $H$ 滿足 $$H^{\dagger}=H$$ 我們稱此矩陣是Hermitian矩陣(又稱自伴矩陣),物理實驗的測量值永遠是實數(如 3.14 eV、-1/2 ħ、5 nm),不可能是複數,因此,量子力學要求: > **當我們對量子態 $|\psi\rangle$ 測量觀測量 $\hat{A}$ 時,得到的本徵值 $a$ 必須是實數。** 假設 $\hat{A}$ 是Hermitian且 $|\psi\rangle$ 是 $\hat{A}$ 的本徵態(eigen state),$a$ 是本徵值(eigen value):$$ \hat{A} |\psi\rangle = a |\psi\rangle$$ 兩邊取共軛轉置: $$\langle \psi | \hat{A}^\dagger = a^* \langle \psi |$$ 因 $\hat{A}^\dagger = \hat{A}$: $$\langle \psi | \hat{A} = a^* \langle \psi |$$ 但原式左乘 $\langle \psi |$: $$\langle \psi | \hat{A} |\psi\rangle = a \langle \psi | \psi \rangle = a $$ $$a = a^* \Rightarrow \boxed{a \text{ 是實數}}$$ 在此要注意的是可以當作量子閘的算符必須是Unitary矩陣,但不一定是Hermitian矩陣 ## 基本量子閘 ### Pauli-X Gate $-\boxed{\text X}-$ Unitary & Hermitian $$\hat{X}=\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}$$ _Example_ : >for 1 qubit $$\hat{X}|0\rangle=\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}\begin{pmatrix}1 \\0\end{pmatrix}=\begin{pmatrix}0 \\1\end{pmatrix}=|1\rangle$$ $$\hat{X}|1\rangle=\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}\begin{pmatrix}0 \\1\end{pmatrix}=\begin{pmatrix}1 \\0\end{pmatrix}=|0\rangle$$ > for 2 qubit X 閘 不會自動作用在兩個 qubit 上,必須明確指定作用在哪個qubit上,量子電路圖中,約定左邊是高位 qubit(qubit 0),右邊是低位(qubit 1): X閘高位(qubit 0)需先做矩陣擴展(4x4) $$\hat{X}\otimes\hat{I}=\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}\otimes\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}=\begin{pmatrix}0\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\quad 1\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\\1\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix} \quad 0\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\end{pmatrix}=\begin{pmatrix}0\quad 0\quad 1 \quad0\\0 \quad 0\quad 0\quad1\\1\quad0\quad0\quad0\\0\quad1\quad0\quad0\end{pmatrix}$$ $$\hat{X}\otimes\hat{I}|00\rangle=\begin{pmatrix}0\quad 0\quad 1 \quad0\\0 \quad 0\quad 0\quad1\\1\quad0\quad0\quad0\\0\quad1\quad0\quad0\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}0\\0\\1\\0\end{pmatrix}=|10\rangle$$ X閘低位(qubit 1) $$\hat{I}\otimes\hat{X}=\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\otimes\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}=\begin{pmatrix}1\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}\quad 0\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}\\0\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix} \quad 1\begin{pmatrix}0\quad 1\\1 \quad 0\end{pmatrix}\end{pmatrix}=\begin{pmatrix}0\quad 1\quad 0 \quad0\\1 \quad 0\quad 0\quad0\\0\quad0\quad0\quad1\\0\quad0\quad1\quad0\end{pmatrix}$$ $$ \hat{I}\otimes\hat{X}|00\rangle=\begin{pmatrix}0\quad 1\quad 0 \quad0\\1 \quad 0\quad 0\quad0\\0\quad0\quad0\quad1\\0\quad0\quad1\quad0\end{pmatrix}\begin{pmatrix}1\\ 0\\0 \\0\end{pmatrix}=\begin{pmatrix}0\\ 1\\0 \\0\end{pmatrix}=|01\rangle $$ ### Pauli-Z Gate $-\boxed{Z}-$ Unitary & Hermitian $$ \hat{Z}=\begin{pmatrix}1\quad\quad 0\\0 \quad -1\end{pmatrix} $$ _Example_ : >for 1 qubit $$\hat{Z}|0\rangle=\begin{pmatrix}1\quad\quad 0\\0 \quad -1\end{pmatrix}\begin{pmatrix}1 \\0\end{pmatrix}=\begin{pmatrix}1 \\0\end{pmatrix}=|0\rangle$$ $$\hat{Z}|1\rangle=\begin{pmatrix}1\quad\quad 0\\0 \quad -1\end{pmatrix}\begin{pmatrix}0 \\1\end{pmatrix}=\begin{pmatrix}\begin{align}0 \\-1\end{align}\end{pmatrix}=-|1\rangle$$ for 2 qubit Z閘高位 $$ \hat{Z}\otimes\hat{I}=\begin{pmatrix}1\quad\quad 0\\0 \quad -1\end{pmatrix}\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}=\begin{pmatrix}1\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\quad\quad 0\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\\0\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix} \quad -1\begin{pmatrix}1\quad 0\\0 \quad 1\end{pmatrix}\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 & 0\\0 & 1 & 0 &0\\0&0&-1&0\\0&0&0&-1\end{pmatrix} $$ $$ \hat{Z}\otimes\hat{I}|00\rangle=\begin{pmatrix}1 & 0 & 0 & 0\\0 & 1 & 0 &0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=|00\rangle $$ $$ \hat{Z}\otimes\hat{I}|10\rangle=\begin{pmatrix}1 & 0 & 0 & 0\\0 & 1 & 0 &0\\0&0&-1&0\\0&0&0&-1\end{pmatrix}\begin{pmatrix}0\\0\\1\\0\end{pmatrix}=\begin{pmatrix}0\\0\\-1\\0\end{pmatrix}=-|10\rangle $$ Z閘低位 $$ \hat{I}\otimes\hat{Z}=\begin{pmatrix}1&0\\0&1\end{pmatrix}\begin{pmatrix}1&0\\0&-1\end{pmatrix}=\begin{pmatrix}1\begin{pmatrix}1&0\\0&-1\end{pmatrix}&0\begin{pmatrix}1&0\\0&-1\end{pmatrix}\\0\begin{pmatrix}1&0\\0&-1\end{pmatrix}&1\begin{pmatrix}1&0\\0&-1\end{pmatrix}\end{pmatrix}=\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&1&0\\0&0&0&-1\end{pmatrix} $$ $$ \hat{I}\otimes\hat{Z}|00\rangle=\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&1&0\\0&0&0&-1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=|00\rangle $$ $$ \hat{I}\otimes\hat{Z}|01\rangle=\begin{pmatrix}1&\kern{7pt}0&0&\kern{7pt}0\\0&-1&0&\kern{7pt}0\\0&\kern{7pt}0&1&\kern{7pt}0\\0&\kern{7pt}0&0&-1\end{pmatrix}\begin{pmatrix}0\\1\\0\\0\end{pmatrix}=\begin{pmatrix}\kern{7pt}0\\-1\\\kern{7pt}0\\\kern{7pt}0\end{pmatrix}=-|01\rangle $$ ### Hadamard Gate $-\boxed{H}-$ Unitary & Hermitian $$ \hat{H}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix} $$ _Example_ : >$$ \hat{H}|0\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}=\frac{1}{\sqrt{2}}\left(|0\rangle+|1\rangle\right)\equiv|+\rangle $$ $$ \hat{H}|1\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}\kern{7pt}1\\-1\end{pmatrix}=\frac{1}{\sqrt{2}}\left(|0\rangle-|1\rangle\right)\equiv|-\rangle $$ Hadamard Gate可以用來產生量子糾纏態(Super Position State),Hadamard Gate同樣具備可逆性值,也就是 $$ \hat{H}|+\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}=\frac{1}{2}\begin{pmatrix}2\\0\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}=|0\rangle $$ $$ \hat{H}|-\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix}\kern{7pt}1\\-1\end{pmatrix}=\frac{1}{2}\begin{pmatrix}0\\2\end{pmatrix}=\begin{pmatrix}0\\1\end{pmatrix}=|1\rangle $$ 對於 2 qubit 的運算,同樣需要針對高位或低位擴展再做運算 Hadamard Gate 高位: $$ \hat{H}\otimes\hat{I}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\begin{pmatrix}1&0\\0&1\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\begin{pmatrix}1&0\\0&1\end{pmatrix}&\kern{7pt}1\begin{pmatrix}1&0\\0&1\end{pmatrix}\\1\begin{pmatrix}1&0\\0&1\end{pmatrix}&-1\begin{pmatrix}1&0\\0&1\end{pmatrix}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&1&0\\0&1&0&1\\1&0&-1&0\\0&1&0&-1\end{pmatrix} $$ $$ \hat{H}\otimes\hat{I}|00\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&1&0\\0&1&0&1\\1&0&-1&0\\0&1&0&-1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\1\\0\end{pmatrix}=\frac{1}{\sqrt{2}} \left(|00\rangle+|10\rangle\right)$$ $$ \hat{H}\otimes\hat{I}|10\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&1&0\\0&1&0&1\\1&0&-1&0\\0&1&0&-1\end{pmatrix}\begin{pmatrix}0\\0\\1\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\-1\\0\end{pmatrix}=\frac{1}{\sqrt{2}} \left(|00\rangle-|10\rangle\right) $$ Hadamard Gate 低位: $$ \hat{I}\otimes\hat{H}=\begin{pmatrix}1&0\\0&1\end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}&0\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\\0\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}&1\begin{pmatrix}1&\kern{7pt}1\\1&-1\end{pmatrix}\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1&0&0\\1&-1&0&0\\0&0&1&1\\0&0&1&-1\end{pmatrix} $$ $$ \hat{I}\otimes\hat{H}|00\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1&0&0\\1&-1&0&0\\0&0&1&1\\0&0&1&-1\end{pmatrix}\begin{pmatrix}1\\0\\0\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\\0\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\left(|00\rangle+|01\rangle\right) $$ $$ \hat{I}\otimes\hat{H}|01\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1&0&0\\1&-1&0&0\\0&0&1&1\\0&0&1&-1\end{pmatrix}\begin{pmatrix}0\\1\\0\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\\0\\0\end{pmatrix}=\frac{1}{\sqrt{2}}\left(|00\rangle-|01\rangle\right) $$