# 超密編碼 Superdense Coding [量子通訊(參考另一篇介紹)](https://hackmd.io/@EyYtbwdYQni5VVJSJxfpgA/ry-1odrW-x)是利用糾纏量子態傳送量子位元資訊,而superdense coding (超密編碼) 是一種量子通訊協定,它允許發送者(Alice)使用一個量子位元(qubit)來傳輸兩個經典位元(bits)的資訊給接收者(Bob),打破傳統一個位元只能傳送一個位元資訊,超密(Superdense)編碼因而得名。 ![image](https://hackmd.io/_uploads/BJjBWqUfWx.png) ### 編碼步驟 假設分隔兩地的Alice和Bob共享一對處於貝爾糾纏態量子位元 $(Q_A,Q_B)$,也就是各自持有其中一個量子位元),其量子位元總狀態可以表示成 $$ \begin{align} |\phi^+\rangle&=\frac{1}{\sqrt{2}} \left(|0\rangle_A|0\rangle_B+|1\rangle_A|1\rangle_B\right)\\ \end{align} $$ 假定Alice想要傳送2個bit的傳統位為資訊 $\rm{b_1b_2}$,2位元資訊可以是00,01,10,11,針對想要傳送的資訊,Alice需要對自己持有的量子位元做量子位元閘計算(或說編碼),對應的量子閘如下: $$ \begin{align} &\rm{b_1b_0}=00 \rightarrow \hat{I}\\ &\rm{b_1b_0}=01 \rightarrow \hat{X} , \text當b_0=1\\ &\rm{b_1b_0}=10 \rightarrow \hat{Z} , \text當b_1=1\\ &\rm{b_1b_0}=11 \rightarrow \hat{Z}\hat{X} , \text當b_0=b_1=1 \end{align} $$ 通過量子閘運算後,總狀態變化如下: $$ \begin{align} \hat{I}|\phi^+\rangle&=|\phi^+\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_A|0\rangle_B+|1\rangle_A|1\rangle_B\right) \\ \hat{X}|\phi^+\rangle&=|\psi^+\rangle=\frac{1}{\sqrt{2}}\left(|1\rangle_A|0\rangle_B+|0\rangle_A|1\rangle_B\right) \\ \hat{Z}|\phi^+\rangle&=|\phi^-\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_A|0\rangle_B-|1\rangle_A|1\rangle_B\right)\\ \hat{X}\hat{Z}|\phi^+\rangle&=|\psi^-\rangle=\frac{1}{\sqrt{2}}\left(|1\rangle_A|0\rangle_B-|0\rangle_A|1\rangle_B\right) \end{align} $$ 現在Alice可以透過量子通道,將已經編過密碼的量子位元傳送給Bob,然後Bob就可進行解碼的量子運算,首先以Alice的量子位元當作控制位元 $Q_A$,而自己的量子位元 $Q_B$ 當做目標位元,進行 $CNOT$ 運算,然再對 $Q_A$ 做 $\text{Hadamart}$ 運算: $$ \begin{align} \rm{b_1b_0}=00 \implies \hat{H}(\hat{CNOT}|\phi^+\rangle)&=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A|0\rangle_B+|1\rangle_A|0\rangle_B\right)\\ &=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A+|1\rangle_A\right)|0\rangle_B\\ &=\hat{H}\hat{H}|0\rangle_A|0\rangle_B\\ &=|00\rangle \end{align} $$ $$ \begin{align} \rm{b_1b_0}=01 \implies \hat{H}(\hat{CNOT}|\psi^+\rangle)&=\hat{H}\frac{1}{\sqrt{2}}\left(|1\rangle_A|1\rangle_B+|0\rangle_A|1\rangle_B\right)\\ &=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A+|1\rangle_A\right)|1\rangle_B\\ &=\hat{H}\hat{H}|0\rangle_A|1\rangle_B\\ &=|01\rangle \end{align} $$ $$ \begin{align} \rm{b_1b_0}=10 \implies \hat{H}(\hat{CNOT}|\phi^-\rangle)&=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A|0\rangle_B-|1\rangle_A|0\rangle_B\right)\\ &=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A-|1\rangle_A\right)|0\rangle_B\\ &=\hat{H}\hat{H}|1\rangle_A|0\rangle_B\\ &=|10\rangle \end{align} $$ $$ \begin{align} \rm{b_1b_0}=11 \implies \hat{H}(\hat{CNOT}|\psi^-\rangle)&=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A|1\rangle_B-|1\rangle_A|1\rangle_B\right)\\ &=\hat{H}\frac{1}{\sqrt{2}}\left(|0\rangle_A-|1\rangle_A\right)|1\rangle_B\\ &=\hat{H}\hat{H}|1\rangle_A|1\rangle_B\\ &=|11\rangle \end{align} $$ 經過量子閘運算後可以發現總狀態完全對應Alice想要傳遞的傳統位元編碼,因此Bob只要對量子位元 $(Q_A,Q_B)$ 進行量測即可得編碼。 ### 量子線路 $\rm{b_1b_0}=00 \implies |0_{q_1}0_{q_0}\rangle$ ![image](https://hackmd.io/_uploads/SJi9InwMWl.png) ![image](https://hackmd.io/_uploads/SJKTkmDGWg.png) $\rm{b_1b_0=01} \implies |0_{q_1}1_{q_0}\rangle$ ![image](https://hackmd.io/_uploads/rJb7_nwzWg.png) ![image](https://hackmd.io/_uploads/rympY3vfZx.png) $\rm{b_1b_0=10} \implies |1_{q_1}0_{q_0}\rangle$ ![image](https://hackmd.io/_uploads/SJpCd2wMZl.png) ![image](https://hackmd.io/_uploads/rkyjthDz-g.png) $\rm{b_1b_0=11} \implies |1_{q_1}1_{q_0}\rangle$ ![image](https://hackmd.io/_uploads/rkomqhPfZl.png) ![image](https://hackmd.io/_uploads/HkFV9nwMZx.png)