# ZeroDCE > * Reference \: > Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement https://github.com/Li-Chongyi/Zero-DCE ## Introduction ![](https://hackmd.io/_uploads/HJfUpwjx0.png) ZeroDCE generate a set of curve adjustment parameter to adjust lighting condition of an image. This method can avoid creating artifact or generate overexposure or underexposure region. ## Curve Design * The curve can be iteratively applied to approximate higher-order curves for more robust and accurate dynamic range adjustment. * The formula for the curve is designed to be differentiable and monotonous. * The output image will be reiterated for model training * Iteratively enhance formula: 𝐿𝐸_𝑛 (π‘₯)=𝐿𝐸_(π‘›βˆ’1) (π‘₯)+π’œ_𝑛 𝐿𝐸_(π‘›βˆ’1) (π‘₯)(1βˆ’πΏπΈ_(π‘›βˆ’1) (π‘₯)) * π’œβ†\[βˆ’1, 1\], 𝐼(π‘₯)←\[0, 1\],𝑛=8 * To avoid overflow truncation, the input pixel value of the enhanced image should be in the normalized rage of \[0, 1\] ![image](https://hackmd.io/_uploads/Sy3CavjgR.png) ## Loss Functions ### Spatial Consistency Loss ![image](https://hackmd.io/_uploads/Bkk2JiieC.png) ### Exposure Control Loss ![image](https://hackmd.io/_uploads/Bk90JijlC.png) ### Color Constancy Loss ![image](https://hackmd.io/_uploads/HJllgsog0.png) ### Color Correctness Loss ![image](https://hackmd.io/_uploads/BJ3EgssgR.png) ### Color Fine Tune Loss ![image](https://hackmd.io/_uploads/BJcTgosxC.png) ### Illumination Smoothness Loss ![image](https://hackmd.io/_uploads/Syc8esjlA.png) ## Result \(After Quantized\) ![](https://hackmd.io/_uploads/ByzjbjjeR.png) ![](https://hackmd.io/_uploads/SJuCfjigA.png)