# Candy Rush We want to count the number of intervals such that if * x is the number of caramels in the interval, * y is the number of licorice in the interval, * K is the cap on caramels in the interval, then $\min(x, K) \geq \frac{x + y}{2}$. ## Lets do some case analysis depending on if $x$ goes above $K$ Case 1: $x \geq K$ Then $\min(x, K) = K$, so $$2 * K \geq x + y \implies x \geq y.$$ Case 2: $x < K$ Then $\min(x, K) = x$, so $$2 * x \geq x + y \implies x \geq y.$$ Notice that in both cases the condition $x \geq y$ has to be true. However in the first case this condition isn't sufficient so we are overcounting the intervals where: * $x \geq y$, and * $x + y > 2 * K$. The condition $x \geq K$ is implied from the other two so it's reduntant. Also note that $x + y$ is simpily the length of the interval. ## Counting intervals where $x \geq y$ Define the array $$p[i] = x - y, \text{in the interval [0, i]}.$$ For any interval $[l, r]$: $$x - y = p[r] - p[l - 1].$$ Now to counting: $$x \geq y \iff p[r] \geq p[l - 1].$$ So if we iterate $r = 0 \dots n-1$, for each $p[r]$ we count the number of earlier $p$-values that are less than or equal to $p[r]$. This can be done efficiently using a Fenwick tree or segment tree. ## Counting the overcounted intervals We will do the exact same but only insert elements when we are $2K$ positions ahead of them ## Code ```cpp #include <bits/stdc++.h> using namespace std; struct T { int n; vector<int> e; T(int n) : n(n), e(n, 0) {} void add(int i, int v) { for (; i < n; i |= i+1) e[i] += v; } int sum(int r) { int s = 0; for (; r >= 0; r = (r & (r + 1)) - 1) s += e[r]; return s; } }; int main() { cin.tie(0)->sync_with_stdio(0); int n, k; cin >> n >> k; vector<int> p(n + 1); string s; cin >> s; for (int i = 0; i < n; i++) p[i + 1] = p[i] + (s[i] == 'C' ? 1 : -1); long long ans = 0; T t(2 * n); t.add(n, 1); for (int i = 0; i < n; i++) { ans += t.sum(p[i + 1] + n); t.add(p[i + 1] + n, 1); } t = T(2 * n); for (int i = 0; i < n; i++) { ans -= t.sum(p[i + 1] + n); if (i + 1 >= 2 * k) t.add(p[i + 1 - 2 * k] + n, 1); } cout << ans << '\n'; } ```