Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: maroon; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #dcd; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/csDqAwM.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/nidMjPr.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> Hey happy emoji! I had a question for you. Can you explain to me how to find local linearization? I do not quite understand it. </div></div> <div><div class="alert blue"> Of course panic emoji! First you have to understand that local linearization just means to find an equation by using the tangent line equation. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I see, but how do we go from the tangent line equation to the local linearzation equation? </div></div> <div><img class="left"/><div class="alert gray"> I really do not know how we get from $y-y_{o}=m\left(x-x_{o}\right)$ to $L\left(x\right)=f\left(a\right)+f'\left(a\right)\left(x-a\right)$ </div></div> <div><div class="alert blue"> These are the steps to get to local linearization: $y-y_{o}=m\left(x-x_{o}\right)$ $y=y_{o}+m\left(x-x_{o}\right)$ Then you change the variables to the function, and the derivitive of the function. So: $L\left(x\right)=f\left(a\right)+f'\left(a\right)\left(x-a\right)$ $a=$ the point of the function </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay! Great! I am starting to understand. can you give me an example problem? </div></div> <div><div class="alert blue"> Sure thing. Find the linear approximation to $h\left(t\right)=t^{4}-6t^{3}+3t-7$ at $t=-3$ First we can find $h(t)$ by using the function. So $h(-3)=227$ Then we find $h'(-3)$ by using the derivitive definition, which you should already know so I will cut to the chase. $h'(-3)=-267$. Now we can plug in what we know to the formula: $L\left(x\right)=f\left(a\right)+f'\left(a\right)\left(x-a\right)$ So the formula will now look like this: $h\left(t\right)=h\left(-3\right)+h'\left(-3\right)\left(x-(-3)\right)$ And then: $h\left(t\right)=227-267\left(x+3\right)$ This will be our formula for linear approximation. Leave it as is, do not simplify. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay! I think I get it. Any more tips before I take this test? </div></div> <div><div class="alert blue"> Yes! Please remember that the equation you find is only good for points close to the number you found it for. For example the equation I showed you: $h\left(t\right)=227-267\left(x+3\right)$ Would only be good for numbers close to -3, like -3.1 and so on. If you input a number far from -3, like 14 then you are going to get a pretty hefty percent error. I hope my tips helped you out! Good luck on your test! </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.