<style>
*{
/*transition: 1s;*/
}
</style>
### Power Method
##### - approximating eigenvalues by iterating
---
#### ● What is Power Method?
----
A way to approch a **eigenvector**
![](https://i.imgur.com/BCZ9gzN.gif)
▲ green vector try to approch
blue eigenvector
----
$A \in \mathbb{R}^{n\times n}$ ,is **diagnalizable**
and the **eigenvalue** of $A$ should be
$$\lambda_1 > \lambda_2 \geq \lambda_3 \geq \dots \geq \lambda_n$$
----
pick a random $\vec{x_0} \in \mathbb{R}^n$
and we do $\vec{x_{i+1}} = \frac{A\vec{x_i}}{|A\vec{x_i}|}$
$\vdots$
when the number of iteration is large
$\vec{x_i}$ would converge to a **eigenvector** corresponding to the $\lambda_1$
---
#### ● Why it works?
----
for $A$ is **diagnalizable** the **eigenvectors** of $A$
$\{\vec{v_1}, \vec{v_2}, \dots ,\vec{v_n}\}$ forms a **basis** of $\mathbb{R}^n$
so the random vector $\vec{x_0}$ can be represent as
$$\vec{x_0} = c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_n\vec{v_n}$$
----
what about $\vec{x_0} \in span(\{\vec{v_2}, \vec{v_3},\dots,\vec{v_n}\})$ ?
----
$$\begin{aligned}
A\vec{x_0} &= A(c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_n\vec{v_n})\\
&= c_1A\vec{v_1} + c_2A\vec{v_2} + \dots + c_nA\vec{v_n}\\
&=c_1\lambda_1\vec{v_1} + c_2\lambda_2\vec{v_2} + \dots + c_n\lambda_n\vec{v_n}
\end{aligned}$$
$$
A^2\vec{x_0} = c_1\lambda_1^2\vec{v_1} + c_2\lambda_2^2\vec{v_2} + \dots + c_n\lambda_n^2\vec{v_n}\\
\vdots
$$
$$
A^i\vec{x_0} = c_1\lambda_1^i\vec{v_1} + c_2\lambda_2^i\vec{v_2} + \dots + c_n\lambda_n^i\vec{v_n}
$$
----
$$\begin{aligned}
A^i\vec{x_0} &= c_1\lambda_1^i\vec{v_1} + c_2\lambda_2^i\vec{v_2} + \dots + c_n\lambda_n^i\vec{v_n}\\
&=\lambda_1^i[c_1\vec{v_1} + c_2(\frac{\lambda_2}{\lambda_1})^i\vec{v_2} + \dots + c_n(\frac{\lambda_n}{\lambda_1})^i\vec{v_n}]
\end{aligned}$$
it converges to $\lambda^i_1c_1\vec{v_1}$
---
#### ● The advantage of it
----
-- Simple
-- Fast
---
#### ● The disadvantage of it
----
-- Too many restrictions
---
#### ● Other method to get the eigenvector
----
- Inverse power method
- Power method with shift
- Inverse power method with shift
- QR-iteration
.
.
.
----
the **QR-iteration**
----
$A \in \mathbb{R}^{n\times n}$
just keep doing **QR-decomposition** to $A$
$$\begin{aligned}
A &= Q_1R_1\\
A_1 &= R_1Q_1
\end{aligned}$$
$$\begin{aligned}
A_1 &= Q_2R_2\\
A_2 &= R_2Q_2
\end{aligned}\\
\vdots$$
----
we collect the $Q_i$s during the process
when the number of iteration getting large
$Q_iQ_{i-1}\cdots Q_2Q_1 =
\begin{bmatrix}
| & | & & | \\
\vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\\
| & | & & | \\
\end{bmatrix}$
where the $\vec{v_1}, \vec{v_2}, \cdots, \vec{v_n}$ ,
are the eigenvectors of $A$
----
Moreover,when the $i$ is getting large
$A$ will converge to $\begin{bmatrix}
\lambda_1 & & & &\\
& \lambda_2 & & &\\
& & \ddots & &\\
& & & & \lambda_n\\
\end{bmatrix}$
where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of $A$.
---
#### ● Why we needs these algorithms?
---
#### ● What can we use the eigenvector do?
----
-- diagnalize
-- solve systems of difference equations
.
.
.
---
#### ● The Google PageRank Algorithm
----
before PageRank Algorithm, some search engine find the "best" website by the frequence of some keywords
----
![](https://i.imgur.com/iYevdSR.png)
----
PageRank Algorithm find the "best" website by the "linkage" between every websites
![](https://i.imgur.com/PzueXfR.png)
----
matrix represent of this network
| | |
| -------- | -------- |
| ![](https://i.imgur.com/PzueXfR.png)| $\begin{bmatrix}0 & 1 & \frac{1}{3} & \frac{1}{3} & 1\\\frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{3} & 0\\ 0 & 0 & 0 & \frac{1}{3} & 0\\\frac{1}{2} & 0 & 0 & 0 & 0\\0 & 0 & \frac{1}{3} & 0 & 0\end{bmatrix}$|
----
$\begin{bmatrix}
0 & 1 & \frac{1}{3} & \frac{1}{3} & 1\\
\frac{1}{2} & 0 & \frac{1}{3} & \frac{1}{3} & 0\\
0 & 0 & 0 & \frac{1}{3} & 0\\
\frac{1}{2} & 0 & 0 & 0 & 0\\
0 & 0 & \frac{1}{3} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
|\\
\vec{v}\\
|\\
\end{bmatrix}=
\begin{bmatrix}
|\\
\vec{v}\\
|\\
\end{bmatrix}$
----
$\begin{bmatrix}
|\\
\vec{v}\\
|\\
\end{bmatrix}=
\begin{bmatrix}
?\\
?\\
\vdots\\
?\\
\end{bmatrix}$
---
#### ● Summary
{"metaMigratedAt":"2023-06-16T18:46:17.188Z","metaMigratedFrom":"YAML","title":"Power Method 投影片","breaks":true,"slideOptions":"{\"transition\":\"fade\",\"allottedMinutes\":20}","contributors":"[{\"id\":\"116c7d83-351b-4a0f-a6a5-321c2f6989b2\",\"add\":5246,\"del\":896}]"}