Q:求EFGH面積 ![](https://hackmd.io/_uploads/rJiktMmC2.png) :::spoiler 答案(防暴雷按鈕) $$ \frac{r^2(3+\pi-3\sqrt{3})}{3} $$ <!--:::spoiler 詳細題解--> :::info ![](https://hackmd.io/_uploads/ryNvtM7Ch.png) > $\overline{A H}=\overline{B H}=\overline{A B}=r$ > 代表$\triangle{ABH}$為正三角形 > $\angle{BAH}=\angle{HBA}=60^{\operatorname{\omicron}}$ > $\angle{BAD}=90^{\operatorname{\omicron}}$ > $\angle{BAD}-\angle{BAH}=\angle{HAD}=30^{\operatorname{\omicron}}$ > 同理可證$\angle{BAG}=30^{\operatorname{\omicron}}$ > $\angle{BAD}-\angle{BAG}-\angle{HAD}=\angle{GAH}=30^{\operatorname{\omicron}}$ ![](https://hackmd.io/_uploads/HyBb6zXR2.png) 過$H$作一直線$\overline{H I}$垂直於$\overline{A G}$,交於點$I$ $\angle{IAH}=30^{\operatorname{\omicron}}$ $\angle{AHI}=60^{\operatorname{\omicron}}$ $\angle{HIA}=90^{\operatorname{\omicron}}$ $\overline{A H}=r$ 由上述四點可得$\overline{H I}=\frac{r}{2}$ $\triangle{AGH}面積=\frac{\overline{A G}}{2}\times\overline{A G}\times\frac{1}{2}=\frac{\overline{A G}^2}{4}$ ![](https://hackmd.io/_uploads/SJLWgQQAh.png) $\angle{GAH}=30^{\operatorname{\omicron}}$ $\overline{A G}=r$ $⌔GAH面積=r^2\pi\times\frac{30^{\operatorname{\omicron}}}{360^{\operatorname{\omicron}}}=r^2\pi\times\frac{1}{12}$ $弓形GH面積=⌔GAH面積-\triangle{AGH}面積=\frac{r^2\pi}{12}-\frac{\overline{A G}^2}{4}=\frac{r^2\pi}{12}-\frac{\overline{A G}^2\times3}{12}=\frac{r^2\pi-r^2\times3}{12}=\frac{r^2(\pi-3)}{12}$ ![](https://hackmd.io/_uploads/rkj4KQm0h.png) 作線段$\overline{A C}$,並作交點$I$於$\overline{G H}$上 $\because\angle{IAH}=\frac{\angle{GAH}}{2}=15^{\operatorname{\omicron}}$ $\quad\overline{A H}=r$ $\quad\angle{IAH}=15^{\operatorname{\omicron}}$ $\therefore\overline{H I}=r\times\frac{1}{\sqrt6+\sqrt2}$ $\quad\overline{G H}=\frac{2r}{\sqrt6+\sqrt2}=\frac{2r(\sqrt6-\sqrt2)}{6-2}=\frac{(\sqrt6-\sqrt2)r}{2}$ $\quad\Box{EFGH}面積=\overline{G H}^2=\frac{r^2(8-4\sqrt{3})}{4}$ $EFGH面積=弓形GH面積\times4+\Box{EFGH}=\frac{r^2(\pi-3)}{12}\times4+\frac{r^2(8-4\sqrt{3})}{4}$ $=\frac{r^2(\pi-3)\times4}{12}+\frac{r^2(8-4\sqrt{3})\times3}{12}=\frac{r^2(\pi-3)\times4+r^2(8-4\sqrt{3})\times3}{12}=\frac{r^2(12+4\pi-12\sqrt{3})}{12}=\frac{r^2(3+\pi-3\sqrt{3})}{3}$ :::