###### tags: `ClassNote` `必修` # 微積分搶救中 # V ## Ch.7(14-7) ### Saddle point(7-a) #### 7.1 if $f(a,b)$ is a local estreme value of $f$, then$f_x(a, b) = 0$ and $f_y(a,b) = 0$ $(a,b)$ is called critical point if: 1. $f_x(a, b)$ does not exist 2. $f_y(a, b)$ does not exist 3. $f_x(a, b) = 0$ and $f_y(a,b) = 0$ #### 7.2 $f(a,b)$ is a local estreme value when $(a, b)$ is either critical point or boundry point #### 7.3 saddle point is a **critial point** but **not** a local extreme value ### Second derivative test(7-b) if $f(c)' = 0$ and $f(c)'' > 0$ then $f(c)$ is a local minimum Let $D = f_{xx}(x,y)f_{yy}(x,y) - {f_{xy}(x,y)}^2$ 1. if $D > 0$ and $f_{xx}(x,y) > 0$ then $f(x,y)$ is a local minimum of f 2. if $D > 0$ and $f_{xx}(x,y) < 0$ then $f(x,y)$ is a local maximum of f 3. if $D < 0$ then $f(x,y)$ is saddle point of $f$ 4. if $D = 0$, no conclusion :::info $D$ is called discriminant or Hessian of $f$ ::: **實作方法** 先一階偏微解聯立求critical points(加上原本的boundry points) $\rightarrow$再用 $D$ 求極值 ### Continuous functions on closed bounded regions(7-c) #### 7.4 in a close boundry.Suppose R is countainous then: 1. $f$ has both max and min (absolute) 2. absolute extreme value is either at critical point or boundry point ## Ch.8(14-8) ### The method of Lagrange multipliers #### 8.1 Let $f(x,y)$ and $g(x,y)$ be differentiable functions. Assume $\nabla g(x,y) \neq \overrightarrow {0}$ whenever $g(x,y) = 0$ If $f$ has local extreme value at (a,b) with $g(a,b) = 0$ Then $\nabla f(a,b)$ and $\nabla g(a,b)$ are parallel. Which exist a Lagrange multiplier $\lambda$ that $$\Bigg\{ \begin{split} f_x(a,b) = \lambda g_x(a,b) \\ f_y(a,b) = \lambda g_y(a,b)\end{split}$$ **Lagrange mutipliers實作** 1. 找出 $g(x,y)$ 2. 代入求出$\lambda$ 3. 代入$\lambda$求出 $x,y$ 的關係式,並帶入$g(x,y)$ 4. 用求出的 $(x,y)$ 代入原先的 $f(x,y)$ 求值 ==Lagrange mutipliers可以套用到三變數函數內== # VI ## Ch.1(15.1) ### Double integeral(1-a) ==region是三次,area是二次== For a close region R: $R$的體積function=$\iint_R \ f(x,y) dA$ ### Iterated integrals over rectangles(1-b) 就四把domain的boundry帶入積分(對應的地方要注意:內對內,外對外) #### 1.2 就四 $dxdy$ 的order可以互換 ## Ch.2(15.2) ### Using vertical cross-sections(2-a) #### 2.1(Fubini's Theorem) $\iint_R f(x,y) dA = \int_a^b \int_{g_1(x,y)}^{g_2(x,y)} f(x,y) \ dy\ dx$ ### Using horizontal cross-sections(2-b) #### 2.2(Fubini's Theorem) $\iint_R f(x,y) dA = \int_c^d \int_{h_1(x,y)}^{h_2(x,y)} f(x,y)\ dx\ dy$ ## Ch.3(15.3) ### Areas by double integrals(3-a) If $f(x,y) = 1$ in a close boundry $R$, then volime under the solid (which is area$(R)$) = $\iint_R dA$ ### The average value(3-b) The average value of $f$ over $R$ is $\frac{1}{area(R)} \iint f(x,y)\ dA$ ## Ch.4(15.4) ### Double integrals in polar coordinates(4-a) $\iint_R f(r,\theta)\ dA = \iint_R f(r,\theta)\ r\ dr\ d\theta$ ## Ch.5(15.5) ### Triple integrals(5-a) volume$(D)$ = $\iiint_D dV$ If $f(x,y,z)$ is a density function of $D$ then mass$(D)$ = $\iiint_D f(x,y,z)\ dV$ ### Iterated triple integrals(5-b) $\iiint_D f(x,y,z) dV = \int_{a}^{b}\int_{g_1(x)}^{g_2(x)}\int_{h_1(x,y)}^{h_2(x,y)}\ dz\ dy\ dx$ ### The average value(5-c) The average value of D is $\frac{1}{volume(d)}\iiint_D f(x,y,z)\ dV$ ## Ch.6(15.7) ### Triple integrals in cylindrical coordinates(6-a) ==$dV = r\ dz\ dr\ d\theta$== ### Triple integrals in spherical coordinates(6-b) $\rho = \sqrt{x^2+y^2+z^2}$ $\phi$ = The angle from positive z-axis to $\overrightarrow {OP}$ $\theta$ = 同polar coordinate的 $\theta$ 1. If $P = (r,\theta,z)$ and $P = (\rho,\phi,\theta)$ then: $r = \rho \sin\phi$, $z = \rho \cos\phi$ $\rho = \sqrt{r^2 + z^2}$ 2. If $P = (x,y,z)$ and $P = (\rho,\phi,\theta)$ then $x = \rho \sin\phi\cos\theta$ $y = \rho\sin\phi\sin\theta$ $z = \rho\cos\phi$ ==$dV = r\ dz\ dr\ d\theta = \rho^2\sin\phi \rho\ d\phi \ d\theta$== ## Ch.7(15.8) ### Substitutions in double integrals(7-a) $\iint_R f(x,y)dA = \iint_S f(x(u,v),y(u,v))\Bigg|\begin{split} x_u\quad x_v\\ y_u \quad y_v \end{split}\Bigg|\ du\ dv$ (Jacobian)$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \Bigg|\begin{split} x_u\quad x_v\\y_u \quad y_v \end{split}\Bigg|$ ### Substitutions in triple integrals(7-c) $\iiint_D f(x,y,z) dV = \iiint_S f(x(u,v,w),y(u,v,w),z(u,v,w))\ J(u,v,w)\ du\ dv\ dw$ > 其實就是三次的版本而已 nothing special # VII ## Ch.1(16-1) ### Line integrals The line integral over curve C is $\int_C f(x,y,z)\ ds$ if C is parametrized by $\overrightarrow{r}(t) = <g(t),h(t),k(t)>$ $\int_C f(x,y,z)\ ds$ = $\int_{a}^{b} f(g(t),h(t),k(t))s'(t)\ dt$ = $\int_{a}^{b} f(g(t),h(t),k(x))\sqrt{(g(t)')^2+(h(t)')^2+(k(t)')^2)}\ dt$ ## Ch.2(16-2) ### Vector fields(2-a) If $z = f(x,y)$ is a differentiable function in N varibles, then gradient of $f$ is a N-dimensional vector field, called gradient field:$$\nabla f(x,y) = <f_x(x,y),f_y(x,y)>$$ >This is two-dimentional gradient field ### Line integrals of vector fields(2-b) :::info 專有名詞 $T = \dfrac{dr}{ds}$ is the unit vector of a soomth curve $\kappa = |\dfrac{dT}{ds}|$ is the curvature $N = \dfrac1{\kappa}\dfrac{dT}{ds}$ is the principal unit normal vector ::: The line integral of $\overrightarrow{F}$ over $C$ is $\int_{C} \overrightarrow{F} \cdot \overrightarrow{T} ds$ =$\int_{a}^{b} \overrightarrow{F} \cdot \overrightarrow{r}(t)' dt$ =$\int_{a}^{b} \overrightarrow{F} \cdot d\overrightarrow{r}(t)$ # 一些方便的註解 如果題目給很複雜的 $y$ 請先reverse order成 $x$ 在做 求完極值點記得算實際值 Jacobian的$u,v$自己設 拿$z^2$和$x^2+y^2$可看出$\phi$ 要注意到底是甚麼換$dt$(在line integeral) $\int \ln{x}\ dx = x\ln{x}-x +C$ $\int e^{ax}\ dx = \dfrac{1}{a} e^{ax} + C$ $\dfrac{de^{ax}}{dx} = a e^{ax}$ $\dfrac{da^y}{dy} = a^y \ln a$