###### tags: `ClassNote` `必修` # 工數沒救了 等明年八 ## Chapter 2 ### 2.6 Wronskian Wronskian 是用來證明$y_1$&$y_2$是否為線性獨立 $W(y_1(x),y_2(X)) = y_1y_2'-y_1'y_2$ If $W(y_1(x),y_2(x)) \neq 0$ Then $y_1$&$y2$ independent ### 2.7 Nonhomogeneous ODEs $y'' + py' + qy = 0$ <- This is homogeneous(H) $y'' + py' + qy = r$ <- This is nonhomogeneous(N) - (1) The difference(-) of 2 solutions of (N) is a solution of (H) - (2) The sum(+) of a solution of (H) and a solution of (N) is also a solution of (N) --- $y_N = y_H + y_P$ $y_H = c_1y_1 + c_2y_2$ (GS of H) $y_P$ is any aolution of(N) Ex $y'' + 2y' + 101y = 10.4 e^x$ 1. Solve $y'' +2y' + 101y = 0$ $\lambda^2 + 2\lambda + 101 = 0 \\ \lambda = \dfrac {-2 \pm \sqrt{4 -404}}{2} = -1 \pm 10 j \\ y_H = e^{-x} (c_1 \cos 10 x + c_2 \sin 10x)$ 2. Find $y_P$ Guess $y_P = ce^x$ $ce^x + 2ce^x + 101ce^x = 10.4e^x \Rightarrow$因為$y_P$為解(部分)因此可帶入y運算 $\Rightarrow c = 0.1, y_P = 0.1e^x, y=e^{-x}(c_1 \cos 10x + c_2 \sin 10x) + 0.1 e^x$ --- **Principle** Choose $y_p$ similar to $r(x)$ with unknown coefficients and then determine coefficients by substitution **Basic Rule** | $r(x)$ | $y_p$ | | -------------- | ------------- | | $e^{\alpha x}$ | $ce^{\alpha x}$ | | $x^n$ | $K_nx^n+K_{n-1}x^{n-1}+\cdots+K_1x+K_0$ | | $\cos\omega x$ or $\sin\omega x$ | $M\cos\omega x + N\sin\omega x$ | | $e^{\alpha x}\cos\omega x$ or $e^{\alpha x} \sin \omega x$ | $e^{\alpha x}(M\cos\omega x + N\sin\omega x)$ | | $e^{\alpha x}x^n$ | $e^{\alpha x}(k_n x^n + \cdots + k_1 x + k_0)$ | --- Ex1. $y'' + 4y = 8x^2$ $\lambda^2 + 4 = 0 \Rightarrow \lambda = \pm 2j \\ y_H = c_1 \cos 2x + c_2 \sin 2x$ Let $y_P = k_2x^2 + k_1x + k_0$ $y_P' = 2k_2 x + k_1 \\ y_P'' = 2k_2$ $2k_2 + 4(k_2x^2 + k_1 x +k_0) = 8x^2 \\ \Rightarrow 4k_2x^2 + 4k_1x + (4k_0 + 2k_2) = 8x^2 \\ \begin{split} \Rightarrow &4k_2 = 8 \Rightarrow k_2 =2\\ &4k_1 = 0 \Rightarrow k_1 =0\\ &4k_0 + 2k_2 = 0 \Rightarrow k_0 = -1 \end{split}$ $y_P = 2x^2 -1\\ y=y_H +y_P\\ y = c_1 \cos 2x + c_2 \sin 2x + 2x^2 -1$ **Modification Rule** If a term in your choice of $y_P$ is a solution of the homogeneous Eq., then multiply $y_P$ by $x$ (or by $x^2$ if double roots) --- Ex2. $y'' - 3y' + 2y = e^x$ $\lambda^2 - 3\lambda + 2=0 \Rightarrow y_H = c_1 e^x + c_2 e^{2x} \\ y_P = ce^x\ ?$ Let $y_P = ce^x \cdot x y_P' = ce^x + cxe^x \\ y_P '' = 2ce^x + cxe^x \\ y_P '' - 3y_P' + 2y_P = e^x \\ \Rightarrow 2ce^x + cxe^x -3ce^x - 3cxe^x + 2cxe^x=e^x\\ \begin{split} \Rightarrow -ce^x = e^x \\ \Rightarrow c=-1\\ y_P = -e^x x \end{split} \qquad\\ y = y_H + y_P = c_1 e^x + c_2 e^{2x} - xe^x$ **Sum rule** If $r(x)$ is a sum of the "common" functions, then choose $y_P$ to be the sum of the solution function. --- Ex. $y''+ 2y'+5y =1.25 e^{0.5x} + 40 \cos 4x - 55 \sin 4x$ $\lambda^2+2\lambda+5=0\\ \lambda=-1\pm2j\\ y_H=c_1e^{-x}\cos2x+c_2e^{-x}\sin2x\\ y_P=ce^{0.5x}+M\cos4x+N\sin4x\\ y_P'=0.5ce^{0.5x}-4M\sin4x+4N\cos4x\\ y_P''=0.25ce^{0.5x}-16M\cos4x-16N\sin4x$ $y_P''+2y_P'+5y_P=1.25e^{0.5x}+40\cos4x-55\sin4x\\ \Rightarrow (0.25+1+5)ce^{0.5x}+(-16M+8N+5M)\cos4x+(-16N-8M+5N)\sin4x\\ =1.25e^{0.5x}+40\cos4x-55\sin4x$ $6.25c=1.25\Rightarrow c=0.2$ $-11M+8N=40$ $-11N-8M=-55$ $M=0,N=5$ $y=y_H+y_P=c_1e^{-x}\cos2x+c_2e^{-x}\sin2x+0.2e^{0.5x}+5\sin4x$ ### 2.10 Variation of Parameters $y'' + py' + qy = r$,p,q,r are functions of x $y_P = y_1\int \dfrac{w_1}{w}rdx + y_2\int \dfrac{w_2}{w}rdx$ $w = \begin{vmatrix} y_1 & y_2\\ y_1' & y_2'\end{vmatrix},\ w_1 = \begin{vmatrix} 0 & y_2\\ 1 & y_2'\end{vmatrix},\ w_2 = \begin{vmatrix} y_1 & 0\\ y_1' & 1\end{vmatrix}$ $y_1 \& y_2$ form a basis of the solutions of $y''+py'+qy=0$ <hr> Ex. $y''+y=\sec(x)$ ---> Not common $\lambda^2+1=0\Rightarrow \lambda=\pm j$ $y_1=\cos x,y_2=\sin x$ $w = \begin{vmatrix} \cos x & \sin x\\ -\sin x & \cos x\end{vmatrix}=\cos^2x+\sin^2x=1$ $y_P=-\cos x\int \sin x\sec x \ dx+\sin x\int \cos x \sec x \ dx\\ =+\cos x\int\dfrac1{\cos x}d\cos x+\sin x\int dx\\ =\cos x\ln|\cos x|+x \sin x$ $y = c_1\cos x + c_2\sin x + \cos x \ln|\cos x| + x\sin x$ ## Chapter 4 ### 4.1 System of Differential Equations | | Dependent V | Independent V | Differential Form | Eq Form | | -------- | -------- | -------- | -------- | -------- | | ODE | $y$ | $x$ | $y',y''$... | $y' = f(x,y)$$y'' = f(x,y,y')$| | PDE | $y$ | $x_1$&$x_2$ | $\frac{dy}{\partial x_1},\frac{dy}{\partial x_2}$... | | | System of ODE | $y_1$&$y_2$ | $t$ | $y_1',y_2',y_1'',y_2''$... | ?? | ### 4.2 Linear System **Homogeneous System** :::warning 以下皆用2nd order DE作為例子 好吧,其實特殊Case大部分都是3rd order DE ::: $y' = \underline{A}(t)\underline{y}$ Any linear combination of $y^{<1>}$&$y^{<2>}$ is also a solution of homogeneous linear different system **Consider Homogeneous System with Constant Coefficients** Let $y = xe^{\lambda t}$ $\underline{Ax}=\lambda \underline{x} \Rightarrow (\underline{A}-\lambda I) = 0$ $\Rightarrow$ 帶入$\lambda$後求出$Nx_1 = Mx_2$ $\underline{x}^{<1>}$ = $\begin{bmatrix} \frac{M}{N} \\ 1 \end{bmatrix}$...依此類推出$\underline{x_2}$ $y = C_1 \underline {x}^{<1>} e^{\lambda_1 t} + C_2\underline {x}^{<2>} e^{\lambda_2 t}$ - **如果$\lambda$為重根** 用$(\underline{A}-\lambda I)\underline{u} = \underline{x}$求出$\underline{u}$的值 $y^{<2>} = t\underline{x}^{<1>}e^{\lambda t} + \underline{u} e^{\lambda t}$ - **如果$\lambda$為重根,且最終只解出兩$\lambda$** 用$(\underline{A}-\lambda I)\underline{u} = \underline{x}$求出$\underline{u}$的值 $y^{<3>} = t\underline{x}^{<重根>}e^{\lambda t} + \underline{u} e^{\lambda t}$ - **如果$\lambda$為重根,且其中一$\lambda$可得出兩$\underline{x}$** 把兩$\underline{x}$分別當作 $\underline{x}^{<2>}$ 與$\underline{x}^{<3>}$ $\Rightarrow$成功獲得兩個$\underline{y}$ - **如果$\lambda$是三重根的話** 用$(\underline{A}-\lambda I)\underline{u} = \underline{x}$求出$\underline{u}$的值 用$(\underline{A}-\lambda I)\underline{v} = \underline{u}$求出$\underline{v}$的值 $\underline{y}^{<1>} = \underline{x}e^{\lambda t}$ $\underline{y}^{<2>} = (t \underline{x} + \underline{u})e^{\lambda t}$ $\underline{y}^{<3>} = (\frac{t^2}{2} \underline{x} + t\underline{u} + \underline{v}) e^{\lambda t}$ **Nonhomogeneous System** $y' = \underline{A}y + \underline{g}$ Solution $y = y_H + y_P \leftarrow y_H$就是上面那個,$y_P$自己設相似的函式(like:$e^{Nt}$ and $te^{Nt}$ ,$\cos{wt}$ and $\sin{wt}$) $\underline{y_P'} = \underline{A}\underline{y_P} + \underline{g}$ 求出的數字帶回原先設的$y_P$就可得到解 ## Chapter 5 ### 5.1 Power Series This is a standard method for solving linear DE with variable coefficient It generally look like this: $\sum_{m=0}^{\infty} a_m(x - x_0)^{m} = a_0 + a_1(x- x_0) + a_2(x - x_0)^{2}$... **Convergence of Power Series** There exist a unmber $R$ such that the series converges at $|x - x_0| < R$ and diverges at $|x - x_0| > R$ 1. $R = 0$ $\Rightarrow$The series converges at $x = 0$ for al $x$ 2. $R = \infty$ 3. $R = \frac{1}{\lim_{m\to 0}|\frac{a_{m+1}}{m} |}$ or $\frac{1}{\lim_{m\to \infty}\sqrt[m]{|a_m|}}$ **Operstion of Power Series** $f(x) = \Sigma_{m=0}^{\infty} {a_m(x - x_0)^m}$ $g(x) = \Sigma_{m=0}^{\infty} {b_m(x - x_0)^m}$ 1. Termwise Addition: $f(x) \pm g(x) = \Sigma_{m=0}^{\infty} {(a_m \pm b_m)(x - x_0)^m}$ 2. Termwise Multiplication: $f(x)\times g(x) = \Sigma_{m=0}^{\infty}\Sigma_{k=0}^{\infty} {a_k b_{m-k}(x - x_0)^m}$ 3. Derivative: $f(x)' = \Sigma_{m=1}^{\infty} a_m m (x-x_0)^{m-1}$ $f(x)'' = \Sigma_{m=1}^{\infty} a_m m (m -1) (x-x_0)^{m-2}$ $f(x)^{(k)} = \Sigma_{m=k}^{\infty} a_m m (m -1)...(m-k+1) (x-x_0)^{m-k}$ 4. Integral: $\int f(x) dx = \Sigma_{m=0}^{\infty} \frac{a_m}{m+1} (x - x_0)^{m+1} + C$ 5. Shifting: $f(x) = \Sigma_{m=0}^{\infty} a_m(x - x_0)^m = \Sigma_{m =1}^{\infty} a_{m-1} (x - x_0)^{m-1}$ **$f(x_0)^{(k)} = a_k k!$** **$\Rightarrow a_k = \frac{f(x_0)^{(k)}}{k!}$** **Solving DE by Power Series** For $y'' + py' + qy = r$ Steps: 1. Assume $y(x) = \Sigma_{m=0}^{\infty} a_m x^m$ 2. Represent $p, q, r$ by power series 3. Try to form a single summation $\Sigma_{m = k}^{\infty}($ $)x^m$ 4. We then generate $a_0'+a_1'x+...+a_{k-1}'x^{k-1}+\Sigma_{m = k}^{\infty}($ $)x^m = 0$ 5. Equate all the terms$(x^0, x^1...)$ to obtain the "recursive relationship" --- Ex. $y' + ky = 0$ Let$y = \Sigma_{m=0}^{\infty}a_m x^m$ $\rightarrow$ $\Sigma_{m=1}^{\infty}a_m m x^{m-1} + \Sigma_{m=0}^{\infty} a_m k x^m$ $\rightarrow \Sigma_{m=0}^{\infty}(a_{m+1}(m+1)+k a_m)x^m = 0$ $a_{m+1} = \frac{-k}{m+1} a_m$ $\Rightarrow$求出$a_0,a_1$...後代入原先設的Power serie ### 5.2 Legendre's Differential Equation :::info $(1-x^2)y''-2xy'+\underbrace{n(n+1)}_{k}\ \ y=0$ ::: :::danger 窩不知道Legendre到底在幹嘛 所以... :confused: ::: ### 5.3 Forbenius 當$x$ is analytic at $x = 0($也就是$x_0 = 0)$ 可用reduction of order 去解power series **Frobenius Method Basis of solutions: Three Cases** ==Case 1==:$r_1 - r_2$ is not an integer $y_1 = x^{r_1} (a_0+a_1 x+a_2 x^2 +\dots)$ $y_2 = x^{r_2} (A_0+A_1 x + A_2 x^2 + \dots)$ ==Case 2==:$r_1=r_2=r$ $y_1 = x^{r} (a_0+a_1 x+a_2 x^2 +\dots)$ $y_2 = y_1 \ln x + x^{r} (A_0+A_1 x + A_2 x^2 + \dots)$ $A_0 = 0$ ==Case 3==:$r_1 - r_2$ is an integer $\neq 0$ $y_1 = x^{r_1}(a_0 + a_1 x +a_2 x^2 + \dots)$ $y_2 = y_1 \ln x \cdot k + x^{r_2} (A_0 + A_1 x + A_2 x^2 + \dots)$ $A_0 \neq 0$ $k$ is a **constant** and can be **zero** ## 窩偷懶一下(反正大一共筆都有了$\quad\Rightarrow$ 快進Laplace!! ## Chapter6 ### 6.1 Laplace Transforamation (S-Shift) $t:$ time $s:$ freq For a function $f(t)$, the Laplace transform $F(s)$ is defined as $F(s)=\mathscr{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$ ( $s$, domain ) $f(t)$ is the ==inverse== of $F(s)$ $f(t)=\mathscr{L}^{-1}\{F(s)\}$ 定義 $s \to jw$ $0 \to - \infty$ ==$\mathscr{L}\big\{f(t)e^{at}\big\} = F(s - a)$== **T-Shift** $\mathscr{L}\big\{ f(t-a)u(t-a)\big\} = e^{-as}F(s)$ **Theorem: Linearity of the Laplace Transform** For $f(t),g(t)$ $\mathscr{L}\Big\{a \ f(t)+b \ g(t)\Big\}=aF(s)+bG(s)$ ![](https://i.imgur.com/EcGQ7c8.png) ### 6.2 Transforms of Derivates and Intergrals. ODEs. **Transform of Derivative** $\mathscr{L}\big\{f'(t)\big\}=sF(s)-f(0)$ **Laplace Transform of the Integral of a Function** $\mathscr{L}\{\int_0^tf(\tau)d\tau\} = \dfrac{F(s)}s$ **Differentiation of Laplace Transforms** $\quad f(t)\quad \leftrightarrow \quad F(s)$ $\ \ tf(t)\quad \leftrightarrow \quad -\dfrac{d}{ds}F(s)$ $t^nf(t)\quad \leftrightarrow\quad (-1)^nF^{(n)}(s)$ :::warning 解題時大概就是先把$\mathscr{L}$微$n$次$\rightarrow$inverse$\rightarrow$除$t^{n}$ ::: **Integration of Transforms** $\dfrac{f(t)}{t}\leftrightarrow\int_s^\infty F(\widetilde s)d\widetilde s$