###### tags: `yolov5` # Yolov5 #### reference - [深入淺出yolov3、yolov4](https://zhuanlan.zhihu.com/p/143747206) - [深入淺出yolov5](https://zhuanlan.zhihu.com/p/172121380) - [Mish activation funcion 詳解](https://blog.csdn.net/Roaddd/article/details/114794071) --- ## 架構 - From Yolov3 ### Block 架構 ![](https://i.imgur.com/XMgSCQ7.jpg) ``` [ CBL ] Conv + BN + LeakyRelu [ Res unit ] CBL + CBL + 殘差 [ ResX ] // downsampling // X 為 Res unit 數量 CBL + X*Res unit ``` ``` 其他操作 [ Concat ] // Tensor 拼接 ex : (26,26,256) concat (26,26,128) => (26,26,384) ``` ### 整體架構 ![](https://i.imgur.com/4H88pNz.jpg) ``` - Backbone : Darknet53 架構 (無 FC 層 Q^Q ) - Neck : FPN 架構 ``` ### FPN: ![](https://i.imgur.com/lVD8pOU.jpg =600x300) ![](https://i.imgur.com/UNgrOnC.jpg =300x300) --- ## 架構 - From Yolov4 ### Block 架構 ![](https://i.imgur.com/p6Qbrn5.jpg) ``` [ CBM ] Conv + BN + Mish [ Res unity ] CBM + CBM + 殘差 [ CSPX ] // X 為 Res unit 數量 [ SPP ] // 使用(1*1),(5*5),(9*9),(13*13) filter 的 Max Pooling,並 concat ``` ### 整體架構 ![](https://i.imgur.com/QW0jdym.jpg) ``` - Input 端 : mosaic 數據增強 (?) - Backbone : CSPDarknet53 架構 - Neck : FPN + PAN - Predictioin : CloU Loss ``` ### FPN + PAN ![](https://i.imgur.com/W50ngh5.jpg =500x350) --- ## 架構 - From Yolov5 ![](https://i.imgur.com/0pAIgxw.jpg)