# sklearn #### 照著圖表走來選擇要用的算法 ![](https://i.imgur.com/jIjdxTm.png) 遇到data依據流程去找適合的model #### 各種類型和其相對適合的方法 ![](https://i.imgur.com/F9Kq9MN.png) #### 練習一個分類器 導入模塊(用花的) from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier 創建數據 iris = datasets.load_iris() iris_X = iris.data iris_y = iris.target 分割數據 X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.3) 用KNeighbors來訓練 knn = KNeighborsClassifier() knn.fit(X_train, y_train) 預測(test x對test y做比對) knn.predict(X_test) #### sklearn 可以用來練習的data set https://scikit-learn.org/stable/datasets/index.html #### preprocesssing 有時候遇到的data可能很差,可以做ex. normalization的資料處理讓其準確率提高很多 https://morvanzhou.github.io/tutorials/machine-learning/sklearn/3-1-normalization/ 還有很多種方法 https://scikit-learn.org/stable/modules/preprocessing.html #### 對model進行evaluation sklearn的cross validation可以看出model及其參數對這個r結構準確度的影響 https://scikit-learn.org/stable/modules/cross_validation.html ## 之後在遇到問題可以來這裡尋求解答 https://scikit-learn.org/stable/user_guide.html