--- tags: linux, kernel --- # 2022q1 Homework3 (quiz3) contributed by < `Destiny0504` > ## 測驗一 因為 ```~0UL``` 在 2's complement 的編碼會呈現全部為一的結果,所以我們利用這種特性並利用 ```shift right``` 和 ```shift left``` 兩種方式來製作 mask 保留我們想要的 bits - ```shift right``` 是用於製作 ```MASK(h, 0)``` - ```shift left``` 是用於製作 ```MASK(0, l)``` - 將兩者合併之後就可以得出我們要的 ```MASK``` 了 ``` c #include <stdio.h> #define GENMASK(h, l) \ (((~0UL) >> (63 - h)) & ((~0UL) >> (l) << (l))) ``` ## 測驗二 ```c struct foo; struct fd { struct foo *foo; unsigned int flags; }; enum { FOO_DEFAULT = 0, FOO_ACTION, FOO_UNLOCK, } FOO_FLAGS; static inline struct fd to_fd(unsigned long v) { return (struct fd){(struct foo *) (v & ~3), v & 3}; } ``` ## 測驗三 利用 ```shift bit``` 與 ```mask``` 並用的方式來達成 reverse 的效果 - 首先,我們先將整個 x 的前四個 bits 與後四個 bits 進行交換。 - 接著將交換好的 x 的前半部份的 bits 分成兩半並進行交換,直到交換的 bits 長度為 1 就結束。 - 為了完成前面想要的交換,我們需要利用 ```mask``` 來去除掉我們不需要的 bits - e.g. ```0xCC``` 用二進位表示為 ```11001100```,這樣就可以只保留我們要的四個 bits,達成 mask 的作用。 ``` c uint8_t rev8(uint8_t x) { // switch the first 4 bits and the last 4 bits in x x = (x >> 4) | (x << 4); x = ((x & 0xCC) >> 2) | ((x & 0x33) << 2); x = ((x & 0xAA) >> 1) | ((x & 0x55) << 1); return x; } ``` - [LeetCode 190. Reverse Bits](https://leetcode.com/problems/reverse-bits/submissions/) - 因為 leetcode 的題目與我們的實作原理相同,所以就順便作答了一下。 ``` c uint32_t reverseBits(uint32_t n) { n = (n >> 16) | (n << 16); n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8); n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4); n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2); n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1); return n; } ``` ## 測驗四 ``` c #include <assert.h> #define _foreach_no_nullval(i, p, arr) \ assert((i) >= sizeof(arr) / sizeof(arr[0]) || (p)) #define foreach_int(i, ...) \ for (unsigned _foreach_i = (((i) = ((int[]){__VA_ARGS__})[0]), 0); \ _foreach_i < sizeof((int[]){__VA_ARGS__}) / sizeof(int); \ (i) = ((int[]){__VA_ARGS__, 0})[++_foreach_i]) #define foreach_ptr(i, ...) \ for (unsigned _foreach_i = \ (((i) = (void *) ((typeof(i)[]){__VA_ARGS__})[0]), 0); \ (i); (i) = (void *) ((typeof(i)[]){__VA_ARGS__, \ NULL})[++_foreach_i], \ _foreach_no_nullval(_foreach_i, i, \ ((const void *[]){__VA_ARGS__}))) ``` ## 測驗五 ``` c int divide(int dividend, int divisor) { int signal = 1; unsigned int dvd = dividend; if (dividend < 0) { signal *= -1; dvd = ~dvd + 1; } unsigned int dvs = divisor; if (divisor < 0) { signal *= -1; dvs = ~dvs + 1; } int shift = 0; while (dvd > (dvs << shift)) shift++; printf("%d\n", shift); unsigned int res = 0; while (dvd >= dvs) { while (dvd < (dvs << shift)) shift--; res |= (unsigned int) 1 << shift; dvd -= dvs << shift; } if (signal == 1 && res >= INT_MAX) return INT_MAX; return res * signal; } ``` ## 測驗六 ``` c #include <stdbool.h> #include "list.h" struct Point { int x, y; }; struct point_node { int p1, p2; struct list_head link; }; static bool can_insert(struct list_head *head, int p1, int p2) { struct point_node *pn; list_for_each_entry (pn, head, link) return p1 == pn->p1; return true; } static int gcd(int x, int y) { while (y) { int tmp = y; y = x % y; x = tmp; } return x; } static int maxPoints(struct Point *points, int pointsSize) { if (pointsSize <= 2) return pointsSize; int i, j, slope_size = pointsSize * pointsSize / 2 + 133; int *dup_cnts = malloc(pointsSize * sizeof(int)); int *hori_cnts = malloc(pointsSize * sizeof(int)); int *vert_cnts = malloc(pointsSize * sizeof(int)); int *slope_cnts = malloc(slope_size * sizeof(int)); memset(hori_cnts, 0, pointsSize * sizeof(int)); memset(vert_cnts, 0, pointsSize * sizeof(int)); memset(slope_cnts, 0, slope_size * sizeof(int)); for (i = 0; i < pointsSize; i++) dup_cnts[i] = 1; struct list_head *heads = malloc(slope_size * sizeof(*heads)); for (i = 0; i < slope_size; i++) INIT_LIST_HEAD(&heads[i]); for (i = 0; i < pointsSize; i++) { for (j = i + 1; j < pointsSize; j++) { if (points[i].x == points[j].x) hori_cnts[i]++, hori_cnts[j]++; if (points[i].y == points[j].y) vert_cnts[i]++, vert_cnts[j]++; if (points[i].x == points[j].x && points[i].y == points[j].y) dup_cnts[i]++, dup_cnts[j]++; if (points[i].x != points[j].x && points[i].y != points[j].y) { int dx = points[j].x - points[i].x; int dy = points[j].y - points[i].y; int tmp = gcd(dx, dy); dx /= tmp; dy /= tmp; int hash = dx * dy - 1333 * (dx + dy); if (hash < 0) hash = -hash; hash %= slope_size; if (can_insert(&heads[hash], i, j)) { struct point_node *pn = malloc(sizeof(*pn)); pn->p1 = i; pn->p2 = j; list_add(&pn->link, &heads[hash]); } } } } for (i = 0; i < slope_size; i++) { int index = -1; struct point_node *pn; list_for_each_entry (pn, &heads[i], link) { index = pn->p1; slope_cnts[i]++; } if (index >= 0) slope_cnts[i] += dup_cnts[index]; } int max_num = 0; for (i = 0; i < pointsSize; i++) { if (hori_cnts[i] + 1 > max_num) max_num = hori_cnts[i] + 1; if (vert_cnts[i] + 1 > max_num) max_num = vert_cnts[i] + 1; } for (i = 0; i < slope_size; i++) { if (slope_cnts[i] > max_num) max_num = slope_cnts[i]; } return max_num; } ``` ## 測驗七 因為我們需要找出最高位的 bit,所以利用比大小之後的結果來決定 ```shift``` 與否,在將我們所有 ```shift``` 的位數全部加起來就可以得出最後的結果。 - 在我們實作的演算法中,我們先比較 v 是否大於 $2^{16} - 1$ 來判斷我們需不需要 ```shift``` 16位之後在繼續比大小,接著重複以樣的動作,只是要比的數依序從 $2^{8} - 1$、$2^{4} - 1$、$2^{2} - 1$、$1$,再把我們得到的值全部相加就可以知道我們最少需要多少 bit 來儲存這個數了 - 因為我們的電腦屬於二進位的系統,所以這邊全部以 2 的次方減 1 作為比較的基準,這樣可以加快之後相加的運算速度。 ``` c int ilog32(uint32_t v) { int ret = v > 0; int m = (v > 0xFFFFU) << 4; v >>= m; ret |= m; m = (v > 0xFFU) << 3; v >>= m; ret |= m; m = (v > 0xFU) << 2; v >>= m; ret |= m; // exp 10 m = (v > 0x3U) << 1; v >>= m; ret |= m; // exp 11 ret |= (v > 0x1U); return ret; } ``` - ```EXP10``` 的答案為 ```m = (v > 0x3) << 1```,而 ```0x3``` 與 ```0x3U``` 的值相同,所以我認為我的實作方式也沒問題。 - ```EXP11``` 的答案為 ```ret += v > 1```,```|= 1 or 0``` 與 ```+= 1 or 0``` 的結果是一樣的,所以我覺得我的實作方式會與答案得出相同的結果。 ## 測驗八 ```c typedef struct tnode *tree; struct tnode { int data; tnode *left; tnode *right; tnode(int d) { data = d; left = right = 0; } }; void remove_data(tree &t, int d) { tnode **p = &t; while (*p != 0 && (*p)->data != d) { if (d < (*p)->data) p = &(*p)->left; else p = &(*p)->right; } tnode *q = *p; if (!q) return; if (!q->left) *p = q->right; else if (!q->right) *p = q->left; else { tnode **r = &q->right; while ((*r)->left) r = &(*r)->left; q->data = (*r)->data; q = *r; *r = q->right; } delete q; } ``` ## 測驗九 將輸入的 x 對齊到```MAX_ALIGNMENT``` * $\lceil \frac{x}{16}\rceil$ - 先將 x 加上 ```MAX_ALIGNMENT - 1``` 來達成無條件進位到 ```MAX_ALIGNMENT``` 的那一位數,再利用 ```MAX_ALIGNMENT - 1u``` 這個 mask 來去除 x 除以 ```MAX_ALIGNMENT``` 的餘數。 ``` c /* maximum alignment needed for any type on this platform, rounded up to a power of two */ #define MAX_ALIGNMENT 16 /* Given a size, round up to the next multiple of sizeof(void *) */ #define ROUND_UP_TO_ALIGNMENT_SIZE(x) \ (((x) + MAX_ALIGNMENT - 1u) & ~(MAX_ALIGNMENT - 1u)) ``` - 另外一種 alignment 方式 - 對齊到 ```ALIGNMENT``` * $\lfloor \frac{x}{16}\rfloor$ ``` c /* maximum alignment needed for any type on this platform, rounded up to a power of two */ #define ALIGNMENT 16 /* Given a size, round up to the next multiple of sizeof(void *) */ #define ROUND_UP_TO_ALIGNMENT_SIZE(x) \ (((x)) & ~(ALIGNMENT - 1u)) ``` ## 測驗十 - 按照題目說明的,```DIVIDE_ROUND_CLOSEST``` 這個 macro 只有在 divisor > 0 時,才是有意義的,所以我們可以分成兩個情況來討論這個問題。 - 第一種情況 x > 0 - 在這個情況下會執行的是 ```(((__x) + ((__d) >> 1)) / (__d))``` 。c 語言的環境中,整數的除法採用的是無條件捨去,所以我們只要將 x 加上 $\frac{divisor}{2}$ ,就可以對原本餘數會大於等於 $\frac{divisor}{2}$ 的情況進位。 - 第二種情況 x <= 0 - 在這個情況下會執行的是 ```(((__x) - ((__d) >> 1)) / (__d))``` ,c 語言的環境中,整數的除法採用的是無條件捨去,所以我們只要將 x 減去 $\frac{divisor}{2}$ ,就會讓計算完的結果為最接近的整數了。 ``` c #define DIVIDE_ROUND_CLOSEST(x, divisor) \ ({ \ typeof(x) __x = x; \ typeof(divisor) __d = divisor; \ (((typeof(x)) -1) > 0 || ((typeof(divisor)) -1) > 0 || \ (((__x) > 0) == ((__d) > 0))) \ ? (((__x) + ((__d) >> 1)) / (__d)) \ : (((__x) - ((__d) >> 1)) / (__d)); \ }) ``` ## 測驗十一 ``` c static inline unsigned long fls(unsigned long word) { int num = 64 - 1; if (!(word & (~0ul << 32))) { num -= 32; word <<= 32; } if (!(word & (~0ul << (64 - 16)))) { num -= 16; word <<= 16; } if (!(word & (~0ul << (64 - 8)))) { num -= 8; word <<= 8; } if (!(word & (~0ul << (64 - 4)))) { num -= 4; word <<= 4; } if (!(word & (~0ul << (64 - 2)))) { num -= 2; word <<= 2; } if (!(word & (~0ul << (64 - 1)))) num -= 1; return num; } unsigned long i_sqrt(unsigned long x) { unsigned long b, m, y = 0; if (x <= 1) return x; m = 1UL << (fls(x) & ~1UL); while (m) { b = y + m; y >>= 1; if (x >= b) { x -= b; y += m; } m >>= 2; } return y; } ```