--- tags: Linear Algebra, NCTU OCW, 莊重 --- # Lecture 3 ## Objectives 1. Definition 2. Verification 3. Properties ### Definition $\text{Let }V\text{ be a vector space over a field }F\text{ and }W\subset V\text{.}\\ \text{Then }W\text{ is a }\textit{subspace}\text{ of }V\\ \text{if }W\text{ is a vector space over }F\text{ with the same two operations.}$ Observation: checking if the 10 axioms apply is troublesome; is there a faster way to verify $W$? Intuitively we have that $\{1,2,5,6,7,8\}$ must also apply if $W\subset V$ #### Theorem 1.3 $W\text{ is a subspace of }V\\ \iff\begin{equation} \begin{cases} \vec{0}\in W & \text{(1)}\\ x+y\in W\text{ whenever }x,y\in W & \text{(2)}\\ \alpha x\in W\text{ whenever }\alpha\in F,~ x\in W & \text{(3)} \end{cases} \end{equation}$ __remark__: In fact, if $W\neq\phi$, then we don't need to check if $\text{(1)}$ of theorem 1.3 holds. *// this remark is left as exercise* __proof__: (theorem 1.3) ($\rightarrow$) __2__ and __3__ is trivial, since $W$ is vector space. __1__? the problem is "$\vec{0}$" may not be the same in $V$ and in $W$. the theorem wants $\vec{0}_V$ of $V$ is the same element of $\vec{0}_W$ of $W$ is the same one. notice we use the same operations, and $W$ by definition of vector space is non-empty, we could apply *elimination* in $V$: $$\begin{equation}\begin{cases} \vec{0}_V&+x=x \\ \vec{0}_W&+x=x \end{cases}\end{equation} \forall x\in W$$ we conclude that $\vec{0}_V=\vec{0}_W$. __1__ holds. ($\leftarrow$) notice we only need to check validity of axiom $4$. That is, existence of anti element of operator $+$ in $W$. $\forall x\in W\subset V,~ \exists \left(-x\right)\in V \text{ s.t. }x+\left(-x\right)=\vec{0}.$ claim: $\left(-x\right)\in W$ notice $\left(-x\right)=\left(-1\right)x$ (check lecture 2) by __3__, we know the claim holds. The proof is hence complete. $\text{Q.E.D.}$ ##### Examples of subspaces (theorem 1.3) - $V=P(F)=\{a_nx^n+\cdots+a_1x+a_0\vert ~n\in\mathbb{N},~ a_i\in F,~ i\in\left(\mathbb{N}\cup \{0\} \right)\}$. All polynomials. $W=P_n(F)=\{a_nx^n+\cdots+a_1x+a_0\vert ~ a_i\in F,~ i\in\left(\mathbb{N}\cup\{0\}\right),~ i\leq n\}$. All polynomials with degree less or equal to $n$. $V$ is a vector space *// easy to check* Is $W$ subspace of $V$? 1 holds, $\vec{0}=0\in W$. 2 and 3 both hold, which is trivial. We conclude, by theorem 1.3, $W$ __*IS*__ subspace of $V$. - $M_{n\times m}\left(F\right)\overset{\Delta}{=}\{\left(a_{ij}\right)_{n\times m}\vert a_{ij}\in F\}$ then if $V=M_{n\times m}$ and $W=\{\left(a_{ij}\right)_{n\times m}\vert a_{ii}=0,~ \forall i\in\{1,2,\cdots,n\}\}$ then $W$ is subspace of $V$. - (__diagonal matrix__) $W=\{\left(a_{ij}\right)_{n\times n}\vert a_{ij}=0,~ \forall i,j\in\{1,2,\cdots,n\},~ i\neq j\}$ then $W$ is also subspace of $V$. - $W=\{\left(a_{ij}\right)_{n\times n}\vert a_{ij}\geq0,~ \forall i,j\in\{1,2,\cdots,n\}\}$ then $W$ is __NOT__ subspace of $V$. notice scalar multiplication is not closed. - $V=\mathbb{R}^2\\ W=\{\left(x,mx\right)\vert~ x\in\mathbb{R},~ m\text{ is some constant in }\mathbb{R}\}$ (observe: $W$ is a straight line with slope equals to $m$ in the 2-D Euclidean space) then $W$ is subspace of $V$. - $V=\mathbb{R}^2\\ W=\{\left(x,mx+b\right)\vert~ x\in\mathbb{R},~ m\text{ is some constant in }\mathbb{R},~ \\ b\text{ is some constant in }\mathbb{R}\}$ (observe: $W$ is a straight line with slope equals to $m$ in the 2-D Euclidean space) then $W$ is __NOT__ a vector space, and hence not subspace of $V$. __observation__: In Euclidean space $\mathbb{R}^n$, subspace must contain $\left(0,\cdots,0\right)$ #### Theorem 1.4 Suppose $W_\alpha$ is subspace of $V$, $\alpha\in\Lambda$, $V$ vector space, then we have: $$\left(\bigcap\limits_{\alpha\in\Lambda}W_\alpha\right) \text{ is a subspace of }V$$ notice we don't limit $\lvert\Lambda\rvert$. __proof__: suppose $x,y\in\left(\bigcap\limits_{\alpha\in\Lambda}W_\alpha\right)\\ \implies x,y\in W_\alpha,~ \forall \alpha\in\Lambda\\ \implies x+y\in W_\alpha,~ \forall \alpha\in\Lambda\\ \implies x+y\in\left(\bigcap\limits_{\alpha\in\Lambda}W_\alpha\right)$ We can do similar treatment to $\alpha x ~\forall x\in W$; hence we conclude theorem holds. $\text{Q.E.D.}$ __remark__: $\cup$ is not as good as $\cap$ in this case: consider $y=x$ and $y=-x$ in 2-D Euclidean space. __remark__: $\textit{Trivial Subspace}$: suppose $V$ is vector space, then $V$ and $\{\vec{0}_V\}$ are both *Trivial Subspace* of $V$. #### Definition $S_1+S_2\overset{\Delta}{=}\{\left(x+y\right)\vert~ x\in S_1,~ y\in S_2\}$ ##### Lemma suppose $W_1,W_2$ subspaces of $V$, we have: 1. $W_1+W_2$ is subspace of $V$ 2. $W_1\cap W_2$ is subspace of $V$ 3. $W_1\cup W_2$ is NOT NECESSARILY subspace of $V$ 4. $W_1+ W_2$ is the __*smallest*__ subspace containing $W_1$ and $W_2$, i.e. if $W$ subspace of $V$ and $\left(W_1\cup W_2\right)\subset W$, then $\left(W_1+W_2\right)\subset W$ notice if we let $x$ be $\vec{0}$, we could easily see that $W_1\cup W_2 \subset W_1 + W_2$ 5. $W_1\cup W_2\text{ is subspace of }V \iff \left(W_1\subset W_2\right)\lor \left(W_2\subset W_1\right)$ (*// left as exercise*) ## Exercises 1. $W_1\cup W_2\text{ is subspace of }V \iff \left(W_1\subset W_2\right)\lor \left(W_2\subset W_1\right)$ ### Proof 1. $\rightarrow$ proof by contradiction; suppose $\left({\neg{\left(W_1\subset W_2\right)}}\right) \land \left({\neg{\left(W_1\subset W_2\right)}}\right)$ since subspaces of vector spaces is never empty, we know: (via *theorem 1.4*) $\left(\left(W_1\setminus W_2\right)\neq \phi\right)\land \left(\left(W_2\setminus W_1\right)\neq \phi\right)\land \left(\left(W_1\cap W_2\right)\neq \phi\right)$ let $x\in\left(W_1\setminus W_2\right)$, $y\in\left(W_2\setminus W_1\right)$, it's obvious that $\left((x+y)\notin W_1\right)\land \left((x+y)\notin W_2\right)$ we conclude that operator $+$ is not closed in the set $W_1\cup W_2$. $\leftarrow$ Trivial. Hence the proposition holds. $\text{Q.E.D.}$