--- tags: Linear Algebra, NCTU OCW, 莊重 --- # Lecture 2 ## Vector Space $\{\text{vectors in plane}\}$ $\{\text{vectors in space}\}$ prerequisites: - $V$: a set - $F$: a field (體) - $\mathbb{R}$ - $\mathbb{C}$ - $\mathbb{Q}$ - $\mathbb{Z}$ is not a field elements in such field is called "__scalar__" - operators on $V$ - $+$ - $\cdot$ - with elements in $F$ e.g.: $V$ is a vector space (over a field $F$) further, $V$, $F$, and the operators need to obey the following 8 (10) axioms. ### Axioms - operator $+$ is closed over $V$ $\forall (x,y)\in V\times V ,~ x+y\in V$ - operator $\cdot$ is closed. $\alpha x\in V,~\forall \alpha\in F~\forall x\in V$ 1. commutative $x+y=y+x~\forall x,y\in V$ 2. associative $\left(x+y\right)+z=x+\left(y+z\right)\text{ whenever }x,y,z\in V$ 3. unit element of operator $+$ $\exists \vec{0}\in V\text{ s.t. }\vec{0}+x=x~\forall x\in V$ 4. "anti element" of operator $+$ $\exists Y\in V\text{ s.t. }y+Y=\vec{0}~\forall y\in V$ 5. unit element of operator $\cdot$ $\exists 1\in F\text{ s.t. }1\cdot x=x~\forall x\in V$ 6. distributive of $\cdot$ $a\left(bx\right)=\left(ab\right)x~\forall x\in V,~a,b\in F$ 7. distributive $a\left(x+y\right)=ax+ay~\forall x,y\in V\text{ and }a\in F$ 8. distributive $\left(a+b\right)x=ax+bx~\forall x\in V\text{ and }a\in F$ in axiom 4, we call $Y$ is 加法反元素 of $y$. ### Examples - $V=\{\text{vectors in plane}\}=\{\left(a,b\right)\vert~a,b\in\mathbb{R}\}$ $F=\mathbb{R}$ $+$: genuine operator $+$ in the Euclidean space $\cdot$: genuine operator $\cdot$ in the Euclidean space - observe that $\vec{0}$ is $\left(0,0\right)$ in the 2-D Euclidean space. - $V$ __IS__ a vector space over field $F$. - $V=\{\text{vectors in plane}\}=\{\left(a,b\right)\vert~a,b\in\mathbb{R}\}$ $F=\mathbb{C}$ $+$: genuine operator $+$ in the Euclidean space $\cdot$: genuine operator $\cdot$ in the Euclidean space - $V$ is __NOT__ a vector space over field $F$. - operator $\cdot$ is not closed - $V=\{\text{vectors in plane}\}=\{\left(a,b\right)\vert~a,b\in\mathbb{R}\}$ $F=\mathbb{Q}$ $+$: genuine operator $+$ in the Euclidean space $\cdot$: genuine operator $\cdot$ in the Euclidean space - $V$ __IS__ a vector space over field $F$. - $V=\{\text{vectors in complex plane}\}=\{\left(a,b\right)\vert~a,b\in\mathbb{C}\}$ $F=\mathbb{C}$ $+$: genuine operator $+$ in the Euclidean space $\cdot$: genuine operator $\cdot$ in the Euclidean space - $V$ __IS__ a vector space over field $F$. - $V=\{\text{vectors in plane}\}=\{\left(a,b\right)\vert~a,b\in\mathbb{R}\}$ $F=\mathbb{R}$ $+$: $x+y\overset{\Delta}{=}\left(x_1+y_1, x_2-y_2\right)$ $\cdot$: genuine operator $\cdot$ in the Euclidean space - $V$ is __NOT__ a vector space over field $F$. - operator $+$ is not commutative over $V$ ### Axioms (Revisited) Def: Given a set V, a field F, and two operations on V, then V is called a vector space over a field F provided that the 10 axioms mentioned earlier are satisfied. Elements in $V$ are called __vector__ (__向量__), whereas elements in $F$ are called __scalar__ (__純量__) ### More Examples - $V=\{\text{vectors in n-dimensional Euclidean space}\}=\{\left(a_1,\cdots,a_n\right)\vert~a_i\in\mathbb{R}~\forall i\in\mathbb{Z},~1\leq i\leq n\}$ $F=\mathbb{R}$ $+$: genuine operator $+$ in the n-dimensional Euclidean space $\cdot$: genuine operator $\cdot$ in the n-dimensional Euclidean space - observe that $\vec{0}$ is $\left(0,0\right)$ in the 2-D Euclidean space. - $V$ __IS__ a vector space over field $F$. - Suppose $V=F^n$, with genuine operators, then it's vector space for $F\in\{ \mathbb{R}, \mathbb{C}, \mathbb{Q} \}$, $n\in\mathbb{Z}^+$ - $V=\{\text{n by n square matrices}\}\\ =\Bigg\{ \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = \left[ a_{ij} \right] \Bigg\vert ~ a_{ij}\in F,~ i,j\in\mathbb{Z},~ 1\leq i,j\leq n \Bigg\}$ $F=F$ $+$: $A=\left[a_{ij}\right], B=\left[b_{ij}\right],\\ A+B=\left[a_{ij}+b_{ij}\right]$ $\cdot$: $A=\left[a_{ij}\right], \alpha A=\left[\alpha a_{ij}\right]$ - such $V$ __IS__ a vector space over $F$ - $V=\{f\vert ~f:S\to F,~ S\text{ is non empty},~ F\text{ is a field}\}$ $F=F$ $+$: $f+g=h,~ h(s)=f(s)+g(s)$ $\cdot$: $\alpha\in F,~ f\in V, \left(\alpha f\right)\left(s\right)=\alpha\left(f\left(s\right)\right)$ - such $V$ __IS__ a vector space over $F$. - thanks to $F$ being a field - notation: $V=\mathcal{F}(S,F)$ - $V$ is set of function of $S$ to $F$ - $V=\mathcal{F}\left(S,F^n\right)$ $F=F$ $+$: $f+g=h,~ h(s)=f(s)+g(s)$ $\cdot$: $\alpha\in F,~ f\in V, \left(\alpha f\right)\left(s\right)=\alpha\left(f\left(s\right)\right)$ - such $V$ __IS__ a vector space over $F$. - $V=\mathcal{F}\left(S,{\left(F^{'}\right)}^n\right)$ $F'$ is another field not necessarily equal to $F$ $+$: $f+g=h,~ h(s)=f(s)+g(s)$ $\cdot$: $\alpha\in F,~ f\in V, \left(\alpha f\right)\left(s\right)=\alpha\left(f\left(s\right)\right)$ - such $V$ is __NOT NECESSARILY__ a vector space over $F$. - $V=\{\left(a_1,a_2\right)\vert~ a_1,a_2\in\mathbb{R}\}$ $F=\mathbb{R}$ $+$: $a+b\overset{\Delta}{=}\left(a_1+b_1,0\right)$ $\cdot$: $\alpha a\overset{\Delta}{=}\left(\alpha a_1,0\right)$ - such $V$ is __NOT__ a vector space - there's no anti element of operator $+$ for some elements in $V$, e.g. (1,1) have no anti element of operator $+$. - there's no unit element of operator $\cdot$. - $V=\{\left(a_1,a_2\right)\vert~ a_1,a_2\in\mathbb{R}\}$ $F=\mathbb{R}$ $+$: genuine operations $\cdot$: $\alpha a\overset{\Delta}{=} \begin{cases} \left(0,0\right),& \text{if } \alpha=0\\ \left(\alpha a_1,\frac{a_2}{\alpha}\right), & \text{if } \alpha\neq0 \end{cases}$ - such $V$ is __NOT__ a vector space - axiom $8$ does __NOT__ hold ### Theorems #### Theorem 1 *elimination works* Supp. $V$ is a V.S. over a field $F$ $x,y,z\in V$, then we have: $$x+z=y+z\iff x=y$$ __proof__: ($\rightarrow$) $\begin{align}x =& x+\vec{0} && \text{axiom 3}\\ =& x+(z+v) && \text{axiom 4, anti }+\text{ of }z\\ =&(x+z)+v && \text{associative of operator }+\\ =&(y+z)+v && \text{prerequisite}\\ =&y+(z+v) && \text{associative of operator }+\\ =&y+\vec{0} \\ =&y && \text{Q.E.D.}\\ \end{align}$ ##### Corollary 1 $\vec{0}$ is *unique* in $V$ ##### Corollary 2 $\exists !~x^{'}\in V\text{ s.t. }x+x^{'}=\vec{0}$ __remark__: by Corollary 2, $\forall x\in V$ we could denote its anti element of operator $+$ by $-x$ __proof__: (corollary 1) supp. there exists $\vec{0}$ and $\vec{0}^{'}$ s.t. $\left( x+\vec{0}=x\land x+\vec{0}^{'}=x\right), ~\forall x\in V$ by theorem 1, elimination works, we have: $\vec{0}=\vec{0}^{'}\\ \text{Q.E.D.}$ __proof__: (corollary 2) use theorem 1 and commutative law of operator $+$ #### Theorem 2 Let $V$ be a vector space over a set $F$, then we have the followings: 1. $0x=\vec{0}, ~\forall x\in V$ 2. $-\left(ax\right)=\left(-a\right)x=a\left(-x\right), ~\forall x\in V ~\forall a\in F$ 3. $a\vec{0}=\vec{0}, ~\forall a\in F$ __proof__: (theorem 2.1) $\begin{align}0x=&(0+0)x\\ =&(0x)+(0x) &&\text{axiom 8, distributive}\\ =&0x &&\text{prerequisite}\\ =&\vec{0}+0x &&\text{zero vector} \end{align}$ apply threorem 1.1 (elimination works), $\text{Q.E.D.}$ __proof__: (theorem 2.2) first we want $-(ax)=(-a)x$ equivalent condition is $(ax)+\left(\left(-a\right)x\right)=\vec{0}$ since additive anti element exists and unique, we know $((-a)\vec{x}) = -(a\vec{x})$. $$\begin{align}ax+(-a)x=&\left(a+\left(-a\right)\right)x && \text{axiom 8, distro}\\ =& 0x &&F\text{ is a field}\\ =& \vec{0} &&\text{theorem 2.1}\\ & &&\text{Q.E.D} \end{align}$$ secondly, we want $(-a)x=a(-x)$ from first part, we have $$-x=(-1)x$$ now: $$\begin{align}a(-x)=&a\left(\left(-1\right)x\right)&& \text{first part}\\ =&\left(a\left(-1\right)\right)x &&\text{axiom 6, associative}\\ =&\left(-a\right)x &&F\text{ is a field}\\ & && \text{Q.E.D.} \end{align}$$ __proof__: (theorem 2.3) apply axiom 7 # My Questions: - prove or find counter example: the unit element of operator $\cdot$, as defined in axiom $5$, must also be the unit element of multiplication in field $F$. - the proposition **doesn't** hold: - consider $V=\{0\}$ and $F=\mathbb{R}$ then any $r\in\mathbb{R}$ is the unit element. - $V=\mathbb{R}$, $F=\mathbb{R}$, $+$ is genuine $+$, and $\cdot$ is $\mathbb{R}$ multiplication divided by $a\in\mathbb{R}$, where $a\neq 0\in\mathbb{R}$