--- tags: Linear Algebra, NCTU OCW, 莊重 --- # Lecture 5 ## 1.5 Linear Independence and Linear Dependence ### Goals - Let $V$ be a vector space, $W\subset V$, $W$ is a subspace of $V$ Find the smallest set $S$ s.t. $\text{Span}\left(S\right)=W$ - $\text{L.I.}$ and $\text{L.D.}$ - Properties - How to check - Gauss Elimination - What is __*dimension*__, and what is __*basis*__ - imagine $\text{dimension}\overset{\Delta}{=}\lVert\text{basis}\rVert$, something like that. ### Definition Suppose $S\subseteq V$ where $V$ is vector space 1. Linear *Dependent* A $S$ is called $\text{L.D.}$ if there exists __some finite distinct__ vectors $u_i\in S$ and __not all zero__ scalar coefficients $a_i\in F$ s.t. $\sum{\left(a_iu_i\right)}=0$ 2. Linear *Independent* If $S$ is not $\text{L.D.}$ then it is called $\text{L.I.}$ That is, if for any set of __distinct__ vectors $\{u_i\} \subset S$, we have $\sum\limits_{i=0}^{n}{\left(a_iu_i\right)}=0\implies a_i=0~ \forall i$, then $S$ is $\text{L.I.}$. #### Example - $V=\mathbb{R}^2,~ S=\big\{(0,0)\big\}$ $S$ is linear dependent. - $\vec{0}_V\in S\implies S\text{ is Linear Dependent}$ - $V=\mathbb{R}^2,~ S=\big\{(1,0),(0,1)\big\}$ $S$ is linear independent. - $V=P_2\left(\mathbb{R}\right)$, $S=\big\{1,x\big\}$ $S$ is linear independent. ### Theorem 1.6 Let $S_1\subseteq S_2\subset V,~ V\text{ vector space}$ then we have the following: 1. $S_2$ linear independent $\implies$ $S_1$ is linear independent 2. $S_1$ linear dependent $\implies$ $S_2$ is linear dependent ### Theorem 1.7 $S\subset V,~ V\text{ vector space},~ S\text{ L.I.},~ v\in V\setminus S$ then: $$\begin{align} S\cup\{v\}&\text{ is L.D.} && \iff v\in\text{Span}\left(S\right)\\ S\cup\{v\}&\text{ is L.I.} && \iff v\notin\text{Span}\left(S\right) \end{align}$$ #### Example - $V=\mathbb{R}^2,~ S=\{(1,0)\}$ $\text{Span}(S)=\text{the x axis}$ supp. $v=(1,1)$ then $S^{'}\overset{\Delta}{=}S\cup \{v\}$ is linear independent. supp. $u=(2,0)$ then $S^{"}\overset{\Delta}{=}S\cup \{u\}$ is linear dependent. __proof__: (theorem 1.6) $\rightarrow$: objective: $v\in\text{Span}(S)$ since $S\cup\{v\}$ is linear dependent, there exists __distinct__ $u_i\in\left(S\cup\{v\}\right),~ i\in\{1,2,\cdots,n\},~ a_i\text{ not all zero}\\ \text{s.t. }\sum\limits_{i=1}^{n}{a_iu_i}=0$ claim: $\exists i\in\{1,2,\cdots,n\}\text{ s.t. }u_i=v$     proof: by contradiction, or $S$ shall be linear dependet at the beginning. WLOG let $u_n=v$; furthermore, $a_n\neq 0$, since similar reasons in the above claim. We ignore the trivial case $v = \vec{0}_V$, since $\vec{0}_V$ is always in span. Hence, we have $v=u_n=\frac{-1}{a_n}\left(a_1u_1+\cdots+a_{n-1}u_{n-1}\right)$ notice they are __distinct__, thus $\text{RHS}\in\text{Span}(S)$, $\text{Q.E.D.}$ $\leftarrow$ Trivial. Notice that span implies there's some __finite__ subset of $V$ sums to $v$, from which we could ensure distinct elements, and by moving terms we know the coefficient corresponding to $v$ is never $0$, since $v\in\left(V\setminus S\right)$; by definition, since there's at least one coefficient that could be non-zero, the proposition hence holds.