--- tags: Linear Algebra, NCTU OCW, 莊重 --- # Lecture 4 ## Linear Combinations and Systems of Linear Equations Goal: Let $V$ be a vector space and $S\subset V$, $S\neq\phi$, find *smallest* subspace $S^{'}$ of $V$ s.t. $S\subset S^{'}$ 1. Introduction of $\textit{l.c.}$ 2. $\text{Span}\left(S\right)$ 3. Given a vector $v$, check if $v$ is $\textit{l.c.}$ of some other set of vectors $S$ $\rightarrow$ solving systems of linear equations ### Linear Combinations Let $V$ be a vector space and $S\subset V$, $S\neq\phi$, $v\in V$ If $\exists u_i\in S,~ a_i\in F,~ i\in\{1,2,\cdots,n\},~ \text{s.t. }v=\sum\limits_{i=1}^{n}{\left(a_iu_i\right)}$, then $v$ is a $\textit{l.c.}$ of vectors $\{u_i|i\in\{1,2,\cdots,n\}\}$, and $\{a_i|i\in\{1,2,\cdots,n\}\}$ are called coefficients of such $\textit{l.c.}$. Alternatively, we say that $v$ is a $\textit{l.c.}$ of vectors of $S$. #### Examples - $V=\mathbb{R}^2,~ F=\mathbb{R},~ S=\{\left(1,0\right),\left(0,1\right)\}$ notice $S$ is not a subspace. the problem is, is there exists a subspace $S^{'}$ that contains $S$, and $S^{'}$ is the *smallest* one satisfying this property? ### Span 「用某個集合$S$張出去的空間」 #### Definition Let $V$ be a vector space and $S\subset V$, $S\neq\phi$, $v\in V$ $\text{Span}\left(S\right)\overset{\Delta}{=}\\ \Big\{\sum\limits_{i=1}^{n}{\left( a_iu_i \right)} \vert a_i\in F,~ u_i\in S,~ n\in\mathbb{N}\Big\}=\\ \big\{\text{the set of vectors that are linear combination of vectors of }S\big\}$ Let $V$ be a vector space and $S\subset V$, $S=\phi$, $v\in V$ $\text{Span}\left(S\right)\overset{\Delta}{=}\{\vec{0}\}$ #### Example - $\text{Span}\left(\big\{(1,0),(0,1)\big\}\right) = \mathbb{R}^2$ - $\text{Span}\left(\big\{(1,0),(0,1),(\pi,e),(-e,\phi)\big\}\right) = \mathbb{R}^2$ #### Theorem 1.5 Let $V$ be a vector space and $S\subset V$, $S\neq\phi$, $v\in V$ then we have the following: 1. $\text{Span}\left(S\right)$ is a *subspace* of $V$ 2. $\text{Span}\left(S\right)$ is the __*smallest*__ subspace containing $S$ That is, if $S\subset W$, $W$ subspace of $V$, then $\text{Span}\left(S\right)\subset W$ __proof__: (1) suppose $x,y\in\text{Span}\left(S\right)$ $\implies \exists a_i,~ u_i,~ b_j,~ v_j,~ \text{where } i\in\{1,2,\cdots, n\},~ j\in\{1,2,\cdots, m\}\\ \text{s.t. }x=\sum\limits_{i=1}^n{(a_iu_i)},~ y=\sum\limits_{j=1}^m{(b_jv_j)}\\ \text{obviously we hence have }\big\{(x+y),\alpha x\big\}\subset\text{Span}\left(S\right)\\ \text{Q.E.D.}$ __proof__: (2) objective: $x\in\text{Span}\left(S\right)\implies x\in W$ suppose $x\in\text{Span}\left(S\right)$ $\implies \exists a_i\in F,~ u_i\in S,~ \text{where } i\in\{1,2,\cdots, n\}\\ \text{s.t. }x=\sum\limits_{i=1}^n{(a_iu_i)}$ notice $u_i\in S\implies u_i\in W$ and subspaces are closed under operator $\cdot$ and $+$, $\text{Q.E.D.}$ ##### Example $u_1=(1,2,1)\\ u_2=(-2,-4,-2)\\ u_3=(0,2,3)\\ u_4=(2,0,-3)\\ u_5=(-3,8,16)\\ v=(2,6,8)$, is there some finite subset $A=\{a_i ~\vert~ i\leq 5, i\in\mathbb{N}\} \subseteq F$ such that $\sum\limits_{1}^{5} {a_i\times u_i} ~=~ v$, that is, $v \in \text{Span}\left(S\right)$? $$\begin{cases} (1\times a_1)+(-2\times a_2)+(0\times a_3)+(2\times a_4)+(-3\times a_5)&=2 \\ (2\times a_1)+(-4\times a_2)+(2\times a_3)+(0\times a_4)+(8\times a_5)&=6 \\ \vdots &=\vdots \end{cases}\\ \underset{\text{elide some symbols}}{\implies}\left[\begin{array}{ccccc|c} 1 & -2 & 0 & 2 & -3 & 2 \\ 2 & -4 & 2 & 0 & 8 & 6 \\ 1 & -2 & 3 & -3 & 16 & 8 \\ \end{array}\right]$$ __remark__: notice how now we have $\left[\begin{array}{c} 2 \\ 6 \\ 8 \end{array}\right]$ as a natural result of $\text{l.c}$ of $\{u_1,u_2,\cdots,u_5\}$ ##### Gassian Elimination $$\left[\begin{array}{ccccc|c} 1 & -2 & 0 & 0 & 1 & -4 \\ 0 & 0 & 1 & 0 & 3 & 7 \\ 0 & 0 & 0 & 1 & -2 & 3 \\ \end{array}\right]$$ $u_1=x^3-2x^2-5x-3\\ u_2=3x^3-5x^2-4x-9\\ v_1=2x^3-2x^2+12x-6\\ v_2=3x^3-2x^2+7x+8$, is $v_1$ or $v_2$ in $\text{Span}\left(S\right)$? $$\left[\begin{array}{cc|cc} 1 & 3 & 2 & 3 \\ -2 & -5 & -2 & -2 \\ -5 & -4 & 12 & 7 \\ -3 & -9 & -6 & 8 \end{array}\right]$$ $$\left[\begin{array}{cc|cc} 1 & 3 & 2 & 3 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & -22 \\ 0 & 0 & 0 & 17 \end{array}\right]$$ turns out that $v_2$ is not in $\text{Span}\left(\{u_1,u_2\}\right)$, while $v_1$ is. $S_1=\Bigg\{ \left(\begin{array}{cc} 1&1\\0&1 \end{array}\right), \left(\begin{array}{cc} 1&1\\1&0 \end{array}\right), \left(\begin{array}{cc} 1&0\\1&1 \end{array}\right), \left(\begin{array}{cc} 0&1\\1&1 \end{array}\right) \Bigg\}$ $S_2=\Bigg\{ \left(\begin{array}{cc} 1&1\\1&0 \end{array}\right), \left(\begin{array}{cc} 1&1\\0&1 \end{array}\right), \left(\begin{array}{cc} 1&0\\1&1 \end{array}\right), \Bigg\}$ $S_3=\Bigg\{ \left(\begin{array}{cc} 1&0\\0&1 \end{array}\right), \left(\begin{array}{cc} 1&1\\0&1 \end{array}\right), \left(\begin{array}{cc} 1&0\\1&1 \end{array}\right), \Bigg\}$ $\text{Span}\left(S_1\right)=\mathbb{R}^{2\times 2}$? $\text{Span}\left(S_2\right)=\mathbb{R}^{2\times 2}$? $\text{Span}\left(S_3\right)=\mathbb{R}^{2\times 2}$? where $\mathbb{R}^{2\times 2}\overset{\Delta}{=}\Big\{\left( \begin{array}{cc} a&b \\ c&d \end{array} \right)\Big\vert~ a,b,c,d\in\mathbb{R}\Big\}$ turns out that $S_1$ is good, $S_2$ and $S_3$ are bad. __forward__: $\mathbb{R}^{2\times 2}$ is $4\text{ Dimensional}$, notice $S_2$ and $S_3$ have only 3 element, hence $S_2$ and $S_3$ must not span $\mathbb{R}^{2\times 2}$ ### Remark consider $\left(m\times n\right)\times\left(n\times p\right) \in \left(m\times p\right)$ ($\text{l.c.}$ of col. vector of left operand view) *linear combine* $n$ vectors in $\mathbb{R}^m$; $p$ sets to be done. ($\text{l.c.}$ of row. vector of right operand view) *linear combine* $n$ vectors in $\mathbb{R}^p$; $m$ sets to be done.