## HW5
1. Heap Sort
1. 下圖為Max Heap。Heap Sort的每一回合,會將Heap的最大值刪除後,又恢復為Heap。請畫出第一回合恢復的過程。
```graphviz
digraph dg{
44 -> 42;
44 -> 35;
42 -> 33;
42 -> 31;
35 -> 19;
35 -> 27;
33 -> 10;
33 -> 26;
31 -> 14;
}
```
- Ans:
1. 去掉最大元素
```graphviz
digraph dg{
14 [style=filled, fillcolor= "#FFCF76"]
14 -> 42;
14 -> 35;
42 -> 33;
42 -> 31;
35 -> 19;
35 -> 27;
33 -> 10;
33 -> 26;
}
```
2. 找 14/42/35 之間最大的元素後交換
```graphviz
digraph dg{
14 [style=filled, weight=0.5, fillcolor= "#FFCF76"];
42 [style=filled, weight=0.5, fillcolor= "#FFCF76"];
42 -> 14;
42 -> 35;
14 -> 33;
14 -> 31;
35 -> 19;
35 -> 27;
33 -> 10[weight=0.5];
33 -> 26[weight=0.5];
}
```
3. 找 14/33/33 之間最大的元素後交換
```graphviz
digraph dg{
14 [style=filled, weight=0.5, fillcolor= "#FFCF76"];
33 [style=filled, weight=0.5, fillcolor= "#FFCF76"];
42 -> 33;
42 -> 35;
33 -> 14;
33 -> 31;
35 -> 19;
35 -> 27;
14 -> 10[weight=0.5];
14 -> 26[weight=0.5];
}
```
4. 找 14/10/26 之間最大的元素後交換
```graphviz
digraph dg{
26 [style=filled, weight=0.5, fillcolor= "#FFCF76"];
42 -> 33;
42 -> 35;
33 -> 26;
33 -> 31;
35 -> 19;
35 -> 27;
26 -> 10[weight=0.5];
26 -> 14[weight=0.5];
14 [style=filled, weight=0.5, fillcolor= "#FFCF76"];
}
```
2. 投影片69頁的公式如下,請解釋此公式的含意。

2. Problem平均的Lower Bound

- 從0開始的結果:

3. Problem Transformation
- Sorting problem reduces to Convex Hull Problem
- 請說明,若要排序五個數字:4,1,3,2,5,如何轉為Convex Hull Problem後,完成排序。

reference:
1. [Graphviz note](https://hackmd.io/9yNZus8GTFaeHjjwcv_CBQ?both)
2. [Attributes Color](https://hackmd.io/@eric88525/graphviz-note)
3. [Attributes Color](https://hackmd.io/@lilybon/graphviz)