# Special Functions #### Unit Step Function: $u(t-a)=\begin{cases} 1,&t>a\\ 0,&t<a \end{cases}$ The constant $a$ shifts the unit function to the right. Somtimes $u(t)$ is also refered to as the function $\epsilon(t)$. Special property: $\int_{-\infty}^{\infty}u(t-a)x(t)dt=\int_{a}^{\infty}x(t)dt$ #### Square Pulse Function: $u(t)-u(t-a)$ The constant $a$ determines the duration of the pulse. #### Cardinal Sine Function: $sinc(t)=\frac{sin(\pi t)}{\pi t}$ #### Rectangular Function: $rect(t/a)=\begin{cases} 1,&\lvert t/a\rvert<1/2\\ 0,&\lvert t/a\rvert>1/2 \end{cases}$ #### Triangular Function: $\lambda(t)=\begin{cases} 0,&\lvert t\rvert>1\\ 1-t,&\lvert t\rvert<1 \end{cases}$ #### Ramp Function: $r_b(t)=\begin{cases} 0,&t<0\\ t/b,&0<t<1\\ 1,&t>b \end{cases}$ #### Dirac Delta Function: The Dirac delta function can be represented heuristically: $\delta(x)=\begin{cases} 0,&x\neq0\\ \infty,&x=0 \end{cases}$ such that the integral is always: $\int_{-\infty}^{\infty}\delta(x)dx=1$ # LODE n-th Order **L**inear **O**rdinary **D**ifferential **E**quation n-th Order: $$\sum_{i=0}^nf_i(x)y^{(i)}=g(x)$$ Where $\max i$ is the order of the differential equation. The *LODE* is called homogeneous if and only if $g(x)=0$. For the case $g(x)\neq0$, the *LODE* is called inhomogeneous. The function $g(x)$ is called disturbance function or forcing function. The general solution of a *LODE* is $y=y_h+y_p$. # Filters #### 1. Order Lowpass: $\frac{dU_{Out}}{dt}+\frac{1}{\tau}U_{Out}=\frac{1}{\tau}U_{In}$ #### 1. Order Highpass: $\frac{dU_{Out}}{dt}+\frac{1}{\tau}U_{Out}=\frac{dU_{In}}{dt}$ Time constant $\tau$ depends on the circuitry values: - RC & CR Circuit: $\tau=RC$ - RL & LR Circuit: $\tau=\frac{L}{R}$ #### 2. Order Lowpass: $\frac{d^2U_{Out}}{dt^2}+\omega^2U_{Out}=\omega^2U_{In}$ #### 2. Order Highpass: $\frac{d^2U_{Out}}{dt^2}+\omega^2U_{Out}=\frac{d^2U_{In}}{dt^2}$ Resonance Frequency $\omega$ depends on the circuitry values: - LC & CL Circuit: $\omega^2=\frac{1}{LC}$ # Terms & Notations Only true for *LTI* Systems: | Function | Notation | | ------------------ | ------------ | | Input signal | $x(t)$ | | Output signal | $y(t)$ | | Impulse response | $h(t)$ | | Frequency response | $H(j\omega)$ | | Transfer function | $H(s)$ | #### Impulse response: The impulse response of a system is the system response (output signal) evaluated using the dirac delta function as input: $h(t)=y(t)\big|_{x(t)=\delta(t)}$ Knowing that $h(t)=\mathcal T\{\delta(t)\}$ leads to the general system response: $y(t)=x(t)\circledast h(t)$