# simple harmonic pendulum <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/HkGu4GP4lx.png) </div> >by https://unacademy.com/content/nda/study-material/physics/pendulum/ $$\tau = -k\theta$$ $$T = 2\pi\sqrt{\frac{I}{k}}$$ ## Swing motion * $F_T = F_gcos\theta$ $(F_T)^2+(F_gsin\theta)^2 = F_g^2$ $$\tau = I\alpha = LF_gsin\theta$$ $$\alpha = \frac{mgL}{I}sin\theta$$ * if $\theta << 1$ , $sin\theta \simeq \theta$ $$\alpha = \frac{mgL}{I}\theta$$ $$\omega = \sqrt{\frac{mgL}{I}}$$ $$T = 2\pi\sqrt{\frac{I}{mgL}}$$ $$I = mr^2$$ $$T = 2\pi\sqrt{\frac{mL^2}{mgL}}$$ :::success $$T = 2\pi\sqrt{\frac{L}{g}}$$ ::: ## Gravity measurement $$T = 2\pi\sqrt{\frac{L}{g}}$$ $$(\frac{T}{2\pi})^2 = \frac{L}{g}$$ $$\frac{4\pi^2}{T^2} = \frac{g}{L}$$ :::success $$g = \frac{4\pi^2L}{T^2}$$ :::