# Entropy $$dS = dQ/T$$ $$Q = mC\ dT$$ * Heat : $Q$ Heat is energy transferred quantity ## Pure Substance * Any process $$\Delta S = S_f-S_i$$ * Isentropic process $$S_i = S_f$$ ## Incompressible * Any process $$S = \int^{T_f}_{T_i}\frac{mC}{T}dT$$ $$S = mC\ln(\frac{T_f}{T_i})$$ * Isentropic process $$T_i = T_f$$ ## Ideal gas(fixed specific heat) $$Q = E_{int}+W = mC\ T+PV$$ $$dQ = dE_{int}+dW = mC\ dT+PdV$$ $$C_P/C_V = \gamma$$ * Any process $$S = C_V\ln(\frac{T_f}{T_i})+R\ln(\frac{V_f}{V_i})$$ $$S = C_P\ln(\frac{T_f}{T_i})+R\ln(\frac{P_f}{P_i})$$ * Isentropic process when $Q = 0$ $$dE_{int} = -dW$$ $$nC_V\ dT = -PdV$$ $$PV = nRT$$ $$nC_V\ dT = -\frac{nRT}{V}dV$$ $$C_V\frac{dT}{T} = -R\frac{dV}{V}$$ $$C_V\int_{T_i}^{T_f}\frac{dT}{T} = -R\int_{V_i}^{V_f}\frac{dV}{V}$$ $$C_V\ln(\frac{T_i}{T_f}) = (C_P-C_V)\ln(\frac{V_f}{V_i})$$ $$\ln(\frac{T_i}{T_f}) = (\frac{C_P}{C_V}-1)\ln(\frac{V_f}{V_i})$$ :::success $$(\frac{T_i}{T_f}) = (\frac{V_f}{V_i})^{\gamma-1}$$ ::: $$(T_fV_f^{\gamma-1}) = (T_iV_i^{\gamma-1})$$ $$TV^{\gamma-1} = \text{constant}$$ $$PV = nRT$$ $$T = (PV)/(nR)$$ $$(\frac{PV}{nR})V^{\gamma-1} = \text{constant}$$ $$(\frac{P}{nR})V^{\gamma} = \text{constant}$$ $$n\ \And\ R\ = \text{constant}$$ $$PV = \text{co}$$ $$P_iV_i^{\gamma} = P_fV_f^{\gamma}$$ :::success $$(\frac{P_f}{P_i}) = (\frac{V_i}{V_f})^{\gamma}$$ ::: $$(\frac{P_f}{P_i})^{1/\gamma} = (\frac{V_i}{V_f})$$ $$(\frac{T_f}{T_i}) = ((\frac{P_f}{P_i})^{1/\gamma})^{\gamma-1}$$ :::success $$(\frac{T_f}{T_i}) = (\frac{P_f}{P_i})^{(\gamma-1)/\gamma}$$ ::: ## Ideal gas(unfixed specific heat) * Any process Entropy change due to temperature change : $S_f^0-S_i^0$ Entropy change due to pressure change : $-R\ln(\frac{P_i}{P_f})$ $$S^0 = \int^T_{T_{ref}}\frac{C_p}TdT$$ $$S_f-S_i = S_f^0-S_i^0-R\ln(\frac{P_i}{P_f})$$ * Isentropic process $$0= S_f^0-S_i^0-R\ln(\frac{P_i}{P_f})$$ $$S_f^0 = S_i^0-R\ln(\frac{P_i}{P_f})$$ ## Ideal gas work * Isentropic process constant : $C$ $$PV^\gamma = C$$ $$P = CV^{-\gamma}$$ $$W = \int^{V_f}_{V_i}CV^{-\gamma}dV$$ $$\int = V^{-\gamma}dV = \frac{V^{(-\gamma+1)}}{-\gamma+1}$$ $$W = \frac C{1-\gamma}(V_f^{1-\gamma}-V_i^{1-\gamma})$$ $$C = P_iV_i^\gamma = P_fV_f^\gamma$$ $$W = \frac 1{1-\gamma}(P_iV_i^\gamma V_f^{1-\gamma}-P_fV_f^\gamma V_i^{1-\gamma})$$ $$W = \frac 1{1-\gamma}(P_fV_f-P_iV_i)$$ $$PV = nRT$$ $$W = \frac 1{1-\gamma}(nRT_f-nRT_i)$$ $$W = \frac{\gamma nR T_i}{\gamma-1} (1 - \frac{T_f}{T_i})$$ $$(\frac{T_f}{T_i}) = (\frac{P_f}{P_i})^{(\gamma-1)/\gamma}$$ $$W = \frac{\gamma nR T_i}{\gamma-1} (1 - (\frac{P_f}{P_i})^{(\gamma-1)/\gamma})$$ :::success $$W = \frac{\gamma nR(T_i-T_f)}{\gamma-1} = \frac{\gamma nRT_i}{\gamma-1}((\frac{P_f}{P_i})^{(\gamma-1)/\gamma}-1)$$ ::: * Polytropic process $$PV^n = C$$ $$W = \frac{nR(T_i-T_f)}{n-1} = \frac{nRT_i}{n-1}((\frac{P_f}{P_i})^{(n-1)/n}-1)$$ * Isothermal process $$PV = nRT$$ $$P = nRT/V$$ $$W = \int PdV = nRT\int\frac{dV}V$$ $$W = nRT\int^{P_f}_{P_i}\frac{dV}V$$ :::success $$W = nRT\ln(\frac{P_f}{P_i})$$ ::: ## Adiabatic efficiency $$\eta = \frac {E_{out}}{E_{\text{Isentropic }}}$$ $$\Delta S = S_{in}-S_{out}+S_{gen}$$ $$dS/dt = \dot S_{in}-\dot S_{out}+\dot S_{gen}$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up