# Maxwell relations ## Gibbs–Helmholtz equation * Internal energy : $E_{int}$ $$dE_{int} = TdS-PdV$$ * Enthalpy : $H$ $$dH = TdS+PdV$$ * Helmholtz Free Energy : $F$ $$dF = -SdT-PdV$$ Gibbs Free Energy : $G$ $$dG = -SdT+VdP$$ ## Maxwell relations :::success $$(\frac{\partial T}{\partial V})_S = -(\frac{\partial P}{\partial S})_V$$ $$(\frac{\partial T}{\partial P})_S = (\frac{\partial V}{\partial S})_P$$ $$(\frac{\partial S}{\partial V})_T = (\frac{\partial P}{\partial T})_V$$ $$(\frac{\partial S}{\partial P})_T = -(\frac{\partial V}{\partial T})_P$$ ::: $$dE_{int} = T\,dS - P\,dV$$ $$\left( \frac{\partial T}{\partial V} \right)_S = \frac{\partial}{\partial V} \left( \frac{\partial E_{int}}{\partial S} \right)_V$$ $$\left( \frac{\partial P}{\partial S} \right)_V = \frac{\partial}{\partial S} \left( \frac{\partial E_{int}}{\partial V} \right)_S$$ $$\left( \frac{\partial T}{\partial V} \right)_S = - \left( \frac{\partial P}{\partial S} \right)_V$$ **** $$dH = T\,dS + V\,dP$$ $$\left( \frac{\partial T}{\partial P} \right)_S = \frac{\partial}{\partial P} \left( \frac{\partial H}{\partial S} \right)_P$$ $$\left( \frac{\partial V}{\partial S} \right)_P = \frac{\partial}{\partial S} \left( \frac{\partial H}{\partial P} \right)_S$$ $$\left( \frac{\partial T}{\partial P} \right)_S = \left( \frac{\partial V}{\partial S} \right)_P$$ **** $$dF = -S\,dT - P\,dV$$ $$\left( \frac{\partial S}{\partial V} \right)_T = \frac{\partial}{\partial V} \left( -\frac{\partial F}{\partial T} \right)_V = -\frac{\partial^2 F}{\partial V \partial T}$$ $$\left( \frac{\partial P}{\partial T} \right)_V = \frac{\partial}{\partial T} \left( \frac{\partial F}{\partial V} \right)_T = \frac{\partial^2 F}{\partial T \partial V}$$ $$\left( \frac{\partial S}{\partial V} \right)_T = \left( \frac{\partial P}{\partial T} \right)_V$$ **** $$dG = -S\,dT + V\,dP$$ $$\left( \frac{\partial S}{\partial P} \right)_T = \frac{\partial}{\partial P} \left( -\frac{\partial G}{\partial T} \right)_P = -\frac{\partial^2 G}{\partial P \partial T}$$ $$\left( \frac{\partial V}{\partial T} \right)_P = \frac{\partial}{\partial T} \left( \frac{\partial G}{\partial P} \right)_T = \frac{\partial^2 G}{\partial T \partial P}$$ $$\left( \frac{\partial S}{\partial P} \right)_T = - \left( \frac{\partial V}{\partial T} \right)_P$$ ## Clausius–Clapeyron equation Changes rate in pressure and temperature during phase transition $$G_{gas} = G_{liquid}$$ * latent heat : $L$ $$dG = -S\,dT + V\,dP$$ $$-S_{gas}\,dT + V_{gas}\,dP = -S_{liquid}\,dT + V_{liquid}\,dP$$ $$(V_{gas}-V_{liquid})dT = (S_{gas}-S_{liquid})dP$$ $$\frac{dP}{dT} = \frac{\Delta S}{\Delta V}$$ $$\Delta S = \frac{L}{T}$$ :::success $$\frac{dP}{dT} = \frac{L}{T\Delta V}$$ ::: $$PV = nRT$$ $$V = \frac{nRT}{P}$$ $$\frac{dP}{dT} = \frac{L}{T\frac{nRT}{P}} = \frac{LP}{nRT^2}$$ $$\int_{P_1}^{P_2}\frac{dP}{P} = \int_{T_1}^{T_2}\frac{LdT}{nRT^2}$$ $$\ln(\frac{P_2}{P_1}) = \frac{L}{R}(\frac1{T_2}-\frac1{T_1})$$ :::success $$\ln(\frac{P_2}{P_1}) = \frac{L}{R}(\frac{\Delta T}{T_1T_2})$$ ::: ## Internal energy, entropy, enthalpy(with Specific Heat) $$dE_{int} = TdS-PdV$$ $$dS = (\frac{\partial S}{\partial T})_VdT+(\frac{\partial S}{\partial V})_TdV$$ $$dE_{int} = T(\frac{\partial S}{\partial T})_VdT+T(\frac{\partial S}{\partial V})_TdV-PdV$$ $$C_V = T(\frac{\partial S}{\partial T})_V$$ $$dE_{int} = C_VdT+T(\frac{\partial S}{\partial V})_TdV-PdV$$ $$(\frac{\partial S}{\partial V})_T = (\frac{\partial P}{\partial T})_V$$ :::success $$dE_{int} = C_VdT+(T(\frac{\partial P}{\partial T})_V-P)dV$$ ::: $$dH = TdS+VdP$$ $$dS = (\frac{\partial S}{\partial T})_PdT+(\frac{\partial S}{\partial V})_TdP$$ $$(\frac{\partial S}{\partial T})_P = \frac{C_P}{T}$$ $$(\frac{\partial S}{\partial P})_T = -(\frac{\partial V}{\partial T})_P$$ $$TdS = C_PdT-T(\frac{\partial V}{\partial T})_PdP$$ $$dH = C_PdT-T(\frac{\partial V}{\partial T})_PdP+VdP$$ :::success $$dH = C_PdT+(V-T(\frac{\partial V}{\partial T})_P)dP$$ ::: $$dE_{int} = TdS-PdV$$ $$TdS = dE_{int}+PdV$$ $$dE_{int} = (\frac{\partial E_{int}}{\partial T})_VdT+(\frac{\partial E_{int}}{\partial V})_TdV$$ $$dE_{int} = C_VdT+(\frac{\partial E_{int}}{\partial V})_TdV$$ $$TdS = C_VdT+(\frac{\partial E_{int}}{\partial V})_TdV+PdV$$ $$T(\frac{\partial P}{\partial T})_V = (\frac{\partial E_{int}}{\partial V})_T+P$$ :::spoiler Why? $$dE_{int} = (\frac{\partial E_{int}}{\partial T})_VdT+(\frac{\partial E_{int}}{\partial V})_TdV$$ $$TdS = dE_{int}+PdV$$ $$dS = \frac{dE_{int}}T+\frac{PdV}T$$ $$dS = (\frac{\partial S}{\partial T})_VdT+(\frac{\partial S}{\partial V})_TdV$$ $$(\frac{\partial S}{\partial T})_VdT+(\frac{\partial S}{\partial V})_TdV = \frac{dE_{int}}T+\frac{PdV}T$$ $$(\frac{\partial S}{\partial V})_T = \frac{dE_{int}}{TdV}+\frac{P}T$$ $$\left( \frac{\partial S}{\partial V} \right)_T = \left( \frac{\partial P}{\partial T} \right)_V$$ :::success $$T(\frac{\partial P}{\partial T})_V = (\frac{\partial E_{int}}{\partial V})_T+P$$ ::: :::success $$dS = \frac{C_V}{T}dT+(\frac{\partial P}{\partial T})_VdV$$ ::: $$dS = (\frac{\partial S}{\partial T})_PdT+(\frac{\partial S}{\partial V})_TdP$$ $$C_P = T(\frac{\partial S}{\partial T})_P$$ $$(\frac{\partial S}{\partial P})_T = -(\frac{\partial V}{\partial T})_P$$ :::success $$dS = \frac{C_P}{T}dT-(\frac{\partial V}{\partial T})_PdP$$ ::: ## Specific Heat $$T(\frac{\partial P}{\partial T})_V = (\frac{\partial E_{int}}{\partial V})_T+P$$ $$(\frac{\partial E_{int}}{\partial V})_T =T(\frac{\partial P}{\partial T})_V -P$$ $$C_V = (\frac{\partial Q}{\partial T})_V= (\frac{\partial E_{int}}{\partial T})_V$$ $$(\frac{\partial C_V}{\partial V})_T = (\frac\partial{\partial V})(\frac{\partial E_{int}}{\partial T})_{V,T}$$ $$(\frac{\partial C_V}{\partial V})_T = (\frac\partial{\partial T})(T(\frac{\partial P}{\partial T})_V -P)_{V,T}$$ :::success $$(\frac{\partial C_V}{\partial V})_T = T(\frac{\partial^2 P}{\partial T^2})_V$$ ::: $$(\frac{\partial C_P}{\partial P})_T = T(\frac{\partial^2 V}{\partial T^2})_P$$ $$C_P-C_{P0} = -T\int_0^P(\frac{\partial^2 V}{\partial T^2})_PdP$$ $$C_P-C_V = -T(\frac{\partial V}{\partial T})^2_P(\frac{\partial P}{\partial V})_P = \frac{VT\beta^2}{\alpha}$$ * Mayer relation $$\beta = \frac1V(\frac{\partial V}{\partial T})_P$$ $$\alpha = -(\frac{\partial P}{\partial V})_T$$ ## Joule–Thomson effect $$\mu_{JT} = (\frac{\partial T}{\partial P})_H$$ $$\mu_{JT} = -\frac1{C_P}(V-T(\frac{\partial V}{\partial T})_P)$$