# Resonance when $\omega = \omega_0$ resonance will occur $$F = kx_{m0}$$ $$F_0cos(\omega t) = m\ddot x+kx$$ $$x_{m0} = \frac Fk$$ $$\omega_0^2 = \frac km$$ :::success $$x_{m0} = \frac{F_0}{m\omega_0^2}$$ ::: ## Power $$P(t) = FV = F_0cos(\omega t)(-x_{m0}\omega_0sin(\omega t))$$ $$= F_0cos(\omega t)(-x_{m0}\omega_0sin(\omega t))$$ $$P(t) = \frac12x_{m0}\omega_0F_0sin(\omega t)$$ :::success $$P = \frac{1}{T}\int_0^T P(t) dt = 0$$ ::: ## Energy $$\frac 12kx_{m0}^2$$