# Routhian Mechanics ## Cyclic coordinates $$\frac{\partial L}{\partial q_i} = 0$$ $$p_i = \frac{\partial L}{\partial \dot q_i} = \text{const}$$ The entire system is insensitive to space. For example: translating the system does not change the physical properties at all. ## Definition * non-cyclic coordinates:( $q_\alpha$ ) * cyclic coordinates:( $q_c$ ) $$p_c = \frac{\partial L}{\partial \dot q_c}$$ $$R(q_\alpha, \dot q_\alpha;\ q_c, p_c) = L(q,\dot q) - \sum_c p_c \dot q_c$$ ## Compared to other mechanics | mechanics | variable | |:-----------:|:------------------------------------:| | Lagrangian | $q, \dot q$ | | Hamiltonian | $q, p$ | | Routhian | $q_\alpha, \dot q_\alpha,\ q_c, p_c$ | | characteristic | mechanics | |:--------------------------:|:------------:| | Non-cyclic coordinates | Lagrangian | | Cyclic coordinates | Hamiltonian | | Partial cyclic coordinates | **Routhian** | ## Routh equations ### non-cyclic(Lagrangian) $$\frac{d}{dt}\frac{\partial R}\partial \dot q_\alpha$$ * $\frac{\partial R}{\partial q_\alpha} = 0$ ### cyclic(Hamiltonian) $$\dot q_c = -\frac{\partial R}{\partial p_c}$$ * $p_c$ is a constant * Another Hamilton equation is automatically satisfied. ## example (Free particles in planar polar coordinates) ### Lagrangian $$L = \frac12 m (\dot r^2 + r^2 \dot\theta^2)$$ * ( $\theta$ ) cyclic coordinates * angular momentum : $p_\theta$ $$p_\theta = m r^2 \dot\theta$$ ### Routhian $$R = L - p_\theta \dot\theta$$ $$\dot\theta = \frac{p_\theta}{m r^2}$$ $$R(r,\dot r; p_\theta) = \frac12 m \dot r^2 - \frac{p_\theta^2}{2 m r^2}$$ $$V_{\text{eff}}(r) =\frac{p_\theta^2}{2 m r^2}$$ The system is equivalent to a **one-dimensional problem**. ## application * Conserved quantity = Eliminable degrees of freedom * Reduced system dimensionality >> More efficient computation * No need for a complete phase space ### Common applications: * Orbital mechanics (conservation of angular momentum) * Symmetrical systems * Vibration models
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up