# curved motion & rotation ## projectile <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/ByaaG9zVle.png" alt="image"width="400"> </div> * when $v_y = 0$ , $y = y_{max}$ * $t_{up} = t_{down} = \frac{v_isin(\theta)}{g}$ $$v_{xi} = v_icos(\theta)$$ $$v_{yi} = v_isin(\theta)$$ $$v = \sqrt{v_x^2+v_y^2}$$ $$\theta_i = tnn^{-1}\frac{v_{yi}}{v_{xi}}$$ $$t_{tt} = 2t_{up} = 2t_{down} = \frac{v_isin(\theta_i)}{g}$$ * total time : $t_{tt}$ $$y_{max} = \frac{v_i^2sin(\theta_i)}{2g}$$ * if $\theta = 90^o$ then $y_{max} = \frac{v_i^2}{2g}$ $$x = \frac{v_i^2sin(2\theta_i)}{g}$$ * $x_{f}(\theta_i)$ is same as $x_f(90^o-\theta_i)$ * if $\theta = 45^o$ , $v_i^2/g = x$ so $4y_{max} = x_f$ $$\frac{y_{max}}{x_f} = \frac{tan(\theta)}{4}$$ $$\frac{x_1}{sin(2\theta_1)} = \frac{x_2}{sin(2\theta_2)}$$ ## different projectile cases 1. $v_{xi} = 0$ , $v_{yi} = 0$ , $y_i = y_{max}$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Syeym5zVle.png" alt="image"width="300"> </div> $$a = g$$ $$y_{max} = \frac12gt^2$$ $$v_{max} = gt$$ 2. $v_{xi} = 0$ , $v_{yi} < 0$ , $y_i = y_{max}$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rkbemqMNle.png" alt="image"width="300"> </div> $$a = g$$ $$y_{max} = \frac12gt^2+v_it$$ $$v_{max} = v_i+gt$$ 3. $v_{xi} = 0$ , $v_{yi} > 0$ , $y_i = 0$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkRx79zVll.png" alt="image"width="300"> </div> $$a = g$$ $$y_{max} = \frac18gt^2$$ $$v_{max} = v_i$$ $$path = 2y_{max} = \frac14gt^2$$ * if $y_1 = y_2$ then $v_1 = v_2$ 4. $v_{xi} \not= 0$ , $v_{yi} = 0$ , $y_i = y_{max}$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BkAbXczNlg.png" alt="image"width="300"> </div> $$a = g$$ $$y_{max} = \frac12gt^2$$ $$t = \sqrt{2H/g}$$ $$x_f = v_it = v_i\sqrt{2H/g}$$ $$v_{max} = \sqrt{v_i^2+(gt)^2}$$ 5. $v_{xi} \not= 0$ , $v_{yi} < 0$ , $y_i = y_{max}$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Hkiz7qMVee.png" alt="image"width="300"> </div> $$a = g$$ $$y_{max} = v_{yi}t+ \frac12gt^2$$ $$x_f = v_{xi}t$$ $$v_{max} = \sqrt{v_{xi}^2+(v_{yi+}gt)^2}$$ ## rotation unit $1\ rpm = \frac{2\pi}{60}\ rad/sec = 60\ rps$ $$\omega = \dot\theta = \frac{d\theta}{dt}$$ $$\alpha = \dot\omega = \ddot\theta = \frac{d^2\theta}{dt^2}$$ $$r\theta = S$$ $$r\omega = v$$ $$r\alpha = a$$ | linear motioa | rotation | |:---:|:---:| |$$\omega = \omega_i+\alpha t$$|$$v = v_i+at$$| |$$\theta = \theta_i+\omega_it+\frac12\alpha t^2$$|$$x = x_i+v_it+\frac12at^2$$| |$$\omega^2 = \omega_i+2\alpha\Delta\theta$$|$$v^2 = v_i^2+2a\Delta x$$| **if $\omega$ is a constant** $$T = \frac{2\pi}{\omega}$$ $$f = \frac{\omega}{2\pi}$$ ## Circular motion <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Hy8hG9MVxl.png" alt="image"width="400"> </div> $$a_t = \frac vt = \frac {r\omega}t = r\alpha$$ $$a_c = \frac{v^2}{r} = v\omega = r\omega^2 = \frac{4\pi^2r}{t^2}$$ $$a_{tt} = \sqrt{a_c^2+a_t^2} = \sqrt{(r\alpha)^2+(r\omega^2)^2} = r\sqrt{\omega^4+\alpha^2}$$