# Wave 1. Electromagnetic Wave * travel without medium and can travel through a vacuum. * Vacuum speed = $c$: 2. Matter Wave * describe the wave-like properties of particles. * Small mass and high speed cause significant wave properties. 3. Mechanical Wave * follow Newton's laws of motion. * mechanical waves require a medium to travel. #### Types of mechanical waves. 1. shear wave 2. longitudinal wave ## Wavelength & Frequency * $k =$ wave number * $x =$ position * $\omega =$ angular frequency * $t =$ time * $y_m =$ amplitude $$y(x,t) = y_msin(kx-\omega t)$$ where $\omega t$ t is the phase $$k = \frac{2\pi}{\lambda}$$ ## Cycle & Angle Frequency & Frequency * when $x = 0$ $$y(0,t) = y_msin(-\omega t)$$ $$y(0,t) = y_msin(-\omega t_i-\omega \Delta t)$$ $$f = \frac1T = \frac\omega {2\pi}$$ $$\omega = \frac{2\pi}{T}$$ ## Velocity of travel wave $$kx-\omega t = constant$$ $$k\frac{dx}{dt} = \omega$$ $$v = \frac{dx}{dt} = \frac\omega k$$ $$v = \frac{2\pi}{k}\cdot\frac\omega{2\pi}$$ :::success $$v = \lambda f$$ ::: ## Wave analysis $$v \Longrightarrow LT^{-1}$$ $$\tau = MLT^{-2}$$ linear density : $\mu = \frac{m}{l}$ , when $R<<1$ $$\mu \Longrightarrow ML^{-1}$$ :::success $$v = \sqrt{\frac \tau\mu}$$ ::: ## Using Newton's Second Law to Derive Waves $$F = \tau2sin\theta \simeq \tau2\theta = \tau\frac{\Delta l}R$$ $$\Delta m = \mu \Delta l$$ $$a = \frac{v^2}{R}$$ $$F = ma \Longrightarrow \tau\frac{\Delta l}R = \mu \Delta l\frac{v^2}{R}$$ $$\tau = \mu v^2$$ $$v = \sqrt{\frac \tau\mu}$$ :::success $$\lambda = \frac vf = \sqrt{\frac \tau{\mu T^2}}$$ ::: ## Wave equation $$F_{2y}-F_{1y} = dm\cdot a_y$$ $$dm = \mu dx$$ $$a_y = \frac{d^2y}{dt^2}$$ $$F_{2y}-F_{1y} = \mu dx\cdot \frac{d^2y}{dt^2} \quad -(1)$$ *** when $F_{1y}$ & $F_{2y} \simeq 0$ $$S_1 = \frac{F_{1y}}{F_{1x}} = tan\theta_1 \simeq sin\theta_1$$ $$S_2 = \frac{F_{2y}}{F_{2x}} = tan\theta_2 \simeq sin\theta_2$$ $$F_1 = \sqrt{F_{1x}^2+F_{1y}^2}$$ $$F_2 = \sqrt{F_{2x}^2+F_{2y}^2}$$ $$\tau = \sqrt{F_{x}^2+F_{y}^2}/S = \sqrt{F_{y}^2+(F_{y}^4/F_{x}^2)} \simeq F_{y}$$ $$F_{1y} = \tau S_1 \quad -(2)$$ $$F_{2y} = \tau S_2 \quad -(3)$$ *** $$(2),(3)\Longrightarrow(1)$$ $$\tau S_2-\tau S_1 = \mu dx\cdot \frac{d^2y}{dt^2}$$ $$\frac{S_2-S_1}{dx} = \frac{dS}{dx} = \frac\mu\tau\frac{d^2y}{dt^2}$$ $$S = \frac{dy}{dx}$$ $$\frac{\partial^2 y}{\partial x^2} = \frac\mu\tau\frac{\partial^2y}{\partial t^2}$$ $$\frac{dt^2}{ dx^2} = \frac\mu\tau$$ $$\frac{dt}{ dx} = \sqrt{\frac\mu\tau}$$ $$\frac{dx}{ dt} = \sqrt{\frac\tau\mu}$$ :::success $$v = \sqrt{\frac\tau\mu}$$ ::: ## Wave energy transmission rate $dK = \frac12dmv^2$ the kinetic energy of thw $(dm)$ area is $(dK)$ $$dK = \frac12dmv^2$$ $$v = \frac{\partial{y}}{\partial{t}} = -\omega y_mcos(kx-\omega t)$$ $$dm = \mu dx$$ $$dk = \frac12(\mu dx)(-\omega y_m)^2cos^2(kx-\omega t)$$ $$\frac{dK}{dt} = \frac12(\mu v)(\omega y_m)^2cos^2(kx-\omega t)$$ $$(\frac{dK}{dt})_{avg} = \frac14\mu v\omega^2 y_m^2$$ :::success $$P_{max} = 2(\frac{dK}{dt})_{avg} = \frac12\mu v\omega^2 y_m^2$$ :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up