# Simple Harmonic Oscillation $$F = ma = m\frac{v^2}{r} = m\omega^2r$$ $$F = kr$$ $$m\omega^2r = kr$$ $$k = m\omega^2$$ :::success $$\omega = \sqrt{\frac{k}{m}}$$ $$T = 2\pi/\omega = 2\pi\sqrt{\frac{m}{k}}$$ ::: * Consider the mass of the spring ($m_s$): [why ??](https://hackmd.io/bkcNhrbuRreR-OI7OkTOJQ) $$T = 2\pi\sqrt{\frac{m+\frac{1}{3}m_s}{k}}$$ ## Energy $$U(t) = \frac{1}{2}kx^2 = \frac{1}{2}kx_m^2cos^2(\omega t+\phi)$$ $$K(t) = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2x_m^2sin^2(\omega t+\phi)$$ $$K(t) = \frac{1}{2}kx_m^2sin^2(\omega t+\phi)$$ $$E = K+U$$ $$E = \frac{1}{2}kx_m^2sin^2(\omega t+\phi)+\frac{1}{2}kx_m^2cos^2(\omega t+\phi)$$ $$= \frac{1}{2}kx_m^2(sin^2(\omega t+\phi)+cos^2(\omega t+\phi))$$ * because $sin^2x+cos^2x = 1$ so $E = U+K = \frac{1}{2}kx_m^2$ ## Graph 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up