# Oscillation ![sin wave](https://hackmd.io/_uploads/ByVm4GD4lg.png) * equation Displacement versus time : $x(t)$ * amplitude : $x_m$ * angular frequency : $\omega$ * Phase : $\phi$ $$x(t) = x_mcos(𝜔t+\phi)$$ * $x_{max} = x_m$ * $x_{min} = -x_m$ ## Cycle VS Frequency $$T = \frac{1}{f}$$ ## Place $$x(t) = x_mcos(𝜔t+\phi)$$ * if $\phi = 0$ , then $x(t) = x_mcos(𝜔t)$ $$x(t) = x_mcos(𝜔t) = x_mcos𝜔(t+T)$$ $$𝜔(t+T) = 𝜔t+2\pi$$ $$𝜔T = 2\pi$$ :::success $$𝜔 = \frac{2\pi}{T} = 2\pi f$$ ::: ## Velocity $$v(t) = \frac{dx(t)}{dt} = \frac{d}{dt}(x_mcos(𝜔t+\phi))$$ :::success $$v(t) = -𝜔x_msin(𝜔t+\phi)$$ ::: ## Acceleratiion $$a(t) = \frac{dv(t)}{dt} = \frac{d}{dt}(-𝜔x_msin(𝜔t+\phi))$$ $$a(t) = -𝜔^2x_mcos(𝜔t+\phi)$$ :::success $$a(t) = -𝜔^2x(t)$$ ::: ## Graph ![oscillation](https://hackmd.io/_uploads/HJDvnXnSJe.png)