# Friction wheel ## Power $$P = Fv = fv$$ $$f = \mu N$$ $$P = \mu Nv = \mu F \frac{\pi DN}{60}$$ $$\text{PS} = \mu F \frac{\pi DN}{735\times60}$$ ## Transmission distance | type | Internal contact | External contact | |:--------------------- |:----------------:|:----------------:| | Transmission distance | $$R-r$$ | $$R+r$$ | ## speed ratio $$v_1 = v_2$$ $$v_1 = r_1\omega_1 = v_2 = r_r\omega_2$$ $$\frac{\omega_1}{\omega_2} = \frac{N_1}{N_2} = \frac{R_2}{R_1} = \frac{D_2}{D_1}$$ ## Conical friction wheel ### External contact $$\frac{N_1}{N_2} = \frac{\sin\beta}{\sin\alpha} = \frac{\sin(\theta-\alpha)}{\sin\alpha}$$ $$= \frac{\sin\theta\cos\alpha-\cos\theta\sin\alpha}{\sin\alpha}$$ $$= \frac{\sin\theta-\cos\theta(\frac{\sin\alpha}{\cos\alpha})}{\frac{\sin\alpha}{\cos\alpha}}$$ $$= \frac{\sin\theta-cos\theta\tan\alpha}{\tan\alpha}$$ $$\frac{N_1}{N_2}\tan\alpha = \sin\theta-\cos\theta\tan\alpha$$ :::success $$\tan\alpha = \frac{\sin\theta}{\frac{N_1}{N_2}+\cos\theta}$$ $$\tan\beta = \frac{\sin\theta}{\frac{N_2}{N_1}+\cos\theta}$$ ::: * if $\theta = \alpha+\beta = 90^o$ :::success $$\tan\alpha = \frac{N_2}{N_1}$$ $$\tan\beta = \frac{N_1}{N_2}$$ ::: ### Internal contact $$\frac{N_1}{N_2} = \frac{\sin\beta}{\sin\alpha} = \frac{\sin(\alpha-\theta)}{\sin\alpha}$$ $$\frac{\sin\alpha\cos\theta-\cos\alpha\sin\theta}{\sin\alpha}$$ $$\frac{\cos\theta(\frac{\sin\alpha}{\cos\alpha})-\sin\theta}{\frac{\sin\alpha}{\cos\alpha}}$$ $$\frac{\cos\theta\tan\alpha-\sin\theta}{\tan\alpha}$$ $$\frac{N_1}{N_2}\tan\alpha = \cos\theta\tan\alpha-\sin\theta$$ :::success $$\tan\alpha = \frac{\sin\theta}{\cos\theta-\frac{N_1}{N_2}}$$ $$\tan\beta = \frac{\sin\theta}{\frac{N_2}{N_1}-\cos\theta}$$ ::: ## Perpendicular disks <div style="text-align: center;"> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/TEZ-Reibradgetriebe_7271.JPG/1024px-TEZ-Reibradgetriebe_7271.JPG" alt="image"width="300"> </div> $$v_A = v_B$$ $$2\pi r_AN_A = 2\pi r_BN_B$$ $$\frac{N_A}{N_B} = \frac{r_B}{r_A}$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up