# 2,3D motion position vector $= \vec{r}$ $$\vec{r} = x\vec{i}+y\vec{j}+z\vec{k}$$ ## Moving distance $$r = \sqrt{x^2 + y^2 + z^2}$$ $$Δ\vec{r} = \vec{r_f}-\vec{r_i}$$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BkJH61xExe.png" alt="image"width="300" height="250"> </div> :::success $$Δ\vec{r}= (x_f-x_i)\vec{i}+(y_f-y_i)\vec{j}+(z_f-z_i)\vec{k}$$ ::: ## Velocity $$v = \frac{dr}{dt}$$ $$\vec{v}= v_x\vec{i}+v_y\vec{j}+v_z\vec{k}$$ :::success $$vx = \frac{dx}{dt}\qquad vy = \frac{dy}{dt}\qquad vz = \frac{dz}{dt}$$ ::: ## Acceleration $$\vec{a_{avg}} = \frac{\vec{v_f}-\vec{v_i}}{t_f-t_i} = \frac{Δ\vec{v}}{Δt}$$ $$\vec{a}= a_x\vec{i}+a_y\vec{j}+a_z\vec{k}$$ :::success $$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$$ $$a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2}$$ $$a_z = \frac{dv_z}{dt} = \frac{d^2z}{dt^2}$$ ::: ## projectile The (a)acceleration of the projectile is constant and The acceleration direction of the projectile is parallel to the y-axis if $a = 0$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SyOlAkxEgl.png" alt="image"width="300" height="250"> </div> $$v_x = v_icos𝜃$$ $$x-x_i = (v_icos𝜃)t$$ $$v_y = v_isin𝜃$$ :::success $$y-y_i = (v_isin𝜃)t$$ ::: if $a = g$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Bkdz01xVxg.png" alt="image"width="300" height="250"> </div> $$v_x = v_icos𝜃$$ $$x-x_i = (v_icos𝜃)t$$ $$v_y = v_isin𝜃-gt$$ :::success $$y-y_i = v_isin𝜃t+\frac{1}{2}gt^2$$ ::: * The relationship between the position, velocity and acceleration of projectile. ''without (t) variable'' * $y = y_i+Δx⋅v_itan𝜃+\frac{1}{2}g(\frac{Δx}{V_icos𝜃})^2$ $$t = \frac{Δx}{v_icos𝜃}$$ $$y = y_i+v_isin𝜃t+\frac{1}{2}gt^2$$ $$= y_i+v_isin𝜃(\frac{Δx}{v_icos𝜃})+\frac{1}{2}g(\frac{Δx}{v_icos𝜃})^2$$ :::success $$y = y_i+Δx⋅v_itan𝜃+\frac{1}{2}g(\frac{Δx}{v_icos𝜃})^2$$ ::: * $v_y^2 = (v_isin𝜃)^2+2g(y-y_i)$ $$v^2 = v_i^2+2aS$$ :::success $$v_y^2 = (v_isin𝜃)^2+2g(y-y_i)$$ ::: * $x_{max} = \frac{v_i^2sin2𝜃}{g}$ $$t_{max} = \frac{2v_isin𝜃}{g}$$ :::success $$X_{max} = v_icos𝜃⋅t = v_icos𝜃⋅\frac{2v_isin𝜃}{g} = \frac{v_i^2sin2𝜃}{g}$$ ::: when $v_x = 0$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SJt3CyeVgg.png" alt="image"width="300" height="250"> </div> $$v_y = gt$$ $$y = y_i+\frac12gt^2$$ ## Circular motion <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BkvV1glExg.png" alt="image"width="300" height="300"> </div> * acceleration centripetal acceleration : $a_c$ Tangential acceleration : $a_t$ $$ a^2 = a_t^2+a_c^2$$ * centripetal acceleration (green) $$v = \frac{2𝜋r}{T}$$ $$a = (\frac{2𝜋r}{t})^2/r = \frac{4𝜋^2r}{t^2} = \frac{v^2}{r}$$ *** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rkIv1xg4lg.png" alt="image"width="300" height="330"> </div> $$\theta = \frac{S}{r} = \frac{vt}{r}$$ :::success $$a = \frac{v^2}{r}$$ ::: * Tangential acceleration (pink) $$𝛼 = \frac{d𝜔}{dt}$$ :::success $$a = r⋅𝛼$$ ::: ## relatioin motion * Velocity if $v<<c$ $$x_{pa} = x_{pb}+x_{ab}$$ $$\frac{dx_{pa}}{dt} = \frac{dx_{pb}}{dt}+\frac{dx_{ab}}{dt}$$ :::success $$\vec{v_{pa}} = \vec{v_{pb}}+\vec{v_{ab}}$$ ::: <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/r1wtkxg4gg.png" alt="image"width="300" height="300"> </div>
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up