# Kinematics of particles ## Linear motion of particles ![image](https://hackmd.io/_uploads/SyK2JjfVll.png) * **position** $$x(t) = a_1t^n+a_2t^{n-1}+a_3t^{n-2}+...+a_nt^{0}$$ * **velocity** $$v = \frac{dx}{dt} = \dot x$$ :::success $$\int v(t)\ dt = x(t)$$ ::: * **acceleration** $$a = \frac{dv}{dt} = \dot v = \frac{d^2x}{dt^2}= \ddot x$$ $$\int a(t)\ dt = v(t)$$ :::success $$\int\int a(t)\ dt = x(t)$$ ::: * **jeck** $$j = \frac{da}{dt} = \dot a = \frac{d^2v}{dt^2}= \ddot v$$ $$\frac{d^3x}{dt^3} = \dddot x$$ $$\int j(t)\ dt = a(t)$$ $$\int\int j(t)\ dt = v(t)$$ :::success $$\int\int\int j(t)\ dt = x(t)$$ ::: ## Formula without time $$v = \frac{dx}{dt}$$ $$a = \frac{dv}{dt}$$ $$\int a\ dx = \int v\ dx$$ ## 3D motion * **velocity** ::: $$v_x = \dot x \qquad v_y = \dot y \qquad v_z = \dot z$$ * **acceleration** $$a_x = \dot v_x = \ddot x$$ $$a_y = \dot v_y = \ddot y$$ $$a_z = \dot v_z = \ddot z$$ * **jeck** $$j_x = \dot a_x = \ddot v_x = \dddot x$$ $$j_y = \dot a_y = \ddot v_y = \dddot y$$ $$j_z = \dot a_z = \ddot v_z = \dddot z$$ ## Motion Component $$s = \sqrt{x^2+y^2}$$ $$ds = \sqrt{dx^2+dy^2}$$ ### x Component $$v_x = v(s)\frac{dx}{ds}$$ $$v_x = v(s)\frac{dx}{\sqrt{dx^2+dy^2}}$$ $$v_x = v(s)\frac{1}{\sqrt{1^2+\frac{dy}{dx}^2}}$$ :::success $$v_x = v(s)\frac{1}{\sqrt{1^2+dy'^2}}$$ ::: ### y Component $$v_y = v(s)\frac{dy}{ds}$$ $$v_y = v(s)\frac{dy}{\sqrt{dx^2+dy^2}}$$ $$v_y = v(s)\frac{\frac{dy}{dx}}{\sqrt{1^2+\frac{dy}{dx}^2}}$$ :::success $$v_y = v(s)\frac{y'}{\sqrt{1^2+dy'^2}}$$ ::: ## Radial and transverse component <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/SyFcgsfEgl.png) </div> unit vector along radial direction : $e_r$ unit vector along transverse direction : $e_\theta$ * $e_r \perp e_\theta$ $$\frac{de_r}{d\theta} = e_{\theta} \qquad \frac{de_\theta}{d\theta} = e_r$$ $$\frac{e_r}{dt} = \frac{de_r}{d\theta}\frac{\theta}{t} = e_\theta\frac{d\theta}{dt}$$ $$\frac{e_\theta}{dt} = \frac{de_\theta}{d\theta}\frac{\theta}{t} = -e_t\frac{d\theta}{dt}$$ :::success $$\dot e_t = \dot\theta e_\theta \qquad\dot e_\theta = -\dot\theta e_r$$ ::: ## Particle motioin(polar coordinate) $$\vec r = re_r$$ $$\vec v = \dot{\vec x} = \frac{d\vec r}{dt} = \dot re_r+r\dot e_r = \dot re_r+r\dot\theta e_\theta$$ $$\vec a = \dot{\vec v} = \frac{d\vec v}{dt} = \frac{d(\dot re_r+r\dot\theta e_\theta)}{dt}$$ $$= (\ddot re_r+\dot r\dot e_r)+(\dot r\dot\theta e_r+r\ddot\theta e_\theta+r\dot \theta\dot e_\theta)$$ :::success $$= (\ddot r-r\dot\theta^2)e_r+(r\ddot\theta+2\dot r\dot\theta)e_\theta$$ ::: *** velocity : $v_r = \dot r$ Angular velocity : $v_\theta = r\dot\theta$ Tangential acceleration, Centripetal acceleration : $a_r = \ddot r-r\dot\theta^2$ Angular acceleration, Coriolis acceleration : $a_\theta = r\ddot\theta+2\dot r\dot\theta$ ### Curve radius $$S = r\theta$$ $$r = \frac{S}{\theta}$$ $$r = \frac{ds}{d\theta} = \frac{\frac{ds}{dx}}{\frac{d\theta}{dx}}$$ **** $$\frac{dy}{dx} = \tan\theta$$ $$\theta = \arctan \frac{dy}{dx}$$ $$\frac{d\theta}{dx} = \frac{d\arctan y'}{dx}$$ $$\frac{d\arctan y'}{dx} = \frac{y''}{1+y'^2}$$ **** $$S = \sqrt{x^2+y^2}$$ $$\frac{dS}{dx} = \sqrt{1^2+\frac{dy}{dx}^2}$$ $$\frac{dS}{dx} = \sqrt{1^2+dy'^2}$$ :::success $$r = \frac{\sqrt{1+dy'^2}}{\frac{y''}{1+y'^2}} = \frac{(1+dy'^2)^{\frac{3}{2}}}{y''}$$ :::