# Plane force system ## Force Decomposition <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HJ-np_zVeg.png" alt="image"width="300"> </div> $$F_x = Fcos(\theta)$$ $$F_y = Fsin(\theta)$$ $$\frac{F}{r} = \frac{F_x}{x} = \frac{F_y}{y}$$ ## Forces synthesis <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SyAC6uz4gg.png" alt="image"width="300"> </div> * **Two forces** $$F = F_A+F_B$$ $$F_B = F-F_A$$ $$F_A = F-F_B$$ $$F_{tt} = \sqrt{(F_A+F_Bcos(\theta))^2+(Fsin(\theta))^2}$$ $$= \sqrt{F_A^2+2F_AF_Bcos(\theta)+F_B^2cos(\theta)+F_B^2sin(\theta)}$$ :::success $$F_{tt} = \sqrt{F_A^2+F_B^2+2F_AF_Bcos(\theta)}$$ $$\alpha = tan^{-1}\frac{F_Bsin(\theta)}{F_A+F_Bcos(\theta)}$$ ::: * **Multiple force** $$F_{tt} = \sqrt{(\sum F_{xi})^2+(\sum{F_{yi}})^2}$$ $$F_x = \sum F_i\vec x$$ $$F_y = \sum F_i\vec y$$ $$\theta = tan^{-1}\frac{\sum F_{yi}}{\sum F_{xi}}$$ $$P(x,y) = (\frac{\sum (F_{xi}x_i)}{F_{xi}},\frac{\sum (F_{yi}y_i)}{F_{yi}})$$ ## Two support points Load force * **point load** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/B1NWCdf4gg.png" alt="image"width="300"> </div> $$F_A+F_B = w$$ * **uniformly distributed load** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rkB7Ruf4ge.png" alt="image"width="300"> </div> $$F_A = \int_0^L\frac wLdx =\frac w2$$ * **uniformly varying load** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Bk_4ROfNlx.png" alt="image"width="300"> </div> $$F_A = \int_0^L\frac wL\frac{x}{L}dx = \frac w3$$ * **unevenly varying load** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/H1BSR_MVxl.png" alt="image"width="300"> </div> $$F_A = \frac wL\int_0^L(\frac{x}{L})^n+(\frac{x}{L})^{n-1}+...dx$$ ## Couple & Torque <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/r10LRdfNxe.png" alt="image"width="300"> </div> $$\tau = F\times r$$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/ry3_COf4eg.png" alt="image"width="300"> </div> $$C = F\times d$$ * **Decomposition** $$Fr = F_xy+F_yx$$ * **synthesis** $$\tau_{tt} = \sum(F_i\times r_i)$$ * $r_1,r_2,r_3 \le r_{tt}$ ## Force and moment balances **Balance of 2 forces** $$\vec F_A = -\vec F_B$$ $$\vec F_A+\vec F_B = 0$$ **Balance of 3 forces** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/H1F9A_G4gx.png" alt="image"width="200"> </div> * Lami's theorem :::success $$\frac{F_A}{sin(A)} = \frac{F_B}{sin(B)} = \frac{F_C}{sin(C)}$$ ::: **Balance of Multi-force** $$\sum F_{xi} = 0$$ $$\sum F_{yi} = 0$$ $$\sum \tau_{i} = 0$$