# Analytical mechanics ## Intrinsic motion ### degrees of freedom * dimension of position space "usually 3" : $D$ * constituents of system "particles" : $P$ * constraints : $C$ * degrees of freedom : $q$ $D\times P-C= q$ ### generalized velocities ( $\dot q$ ) $q = (q_1,q_2,q_3...q_N)$ $$v = \frac{dq}{dt} = \dot q_1,\dot q_2,\dot q_3...\dot q_N$$ ## Lagrangian mechanics * total kinetic energy : $T$ * Total potential energy : $V$ * Lagrangian : $L$ $$L(q,\dot q,t) = T(q,\dot q,t)-V(q,\dot q,t)$$ ### Euler–Lagrange equations $$\frac d{dt}(\frac{\partial L}{\partial \dot q}) = \frac{\partial L}{\partial q}$$ ## Hamiltonian mechanics * Hamiltonian : $H$ $$H(q,p,t) = p\cdot\dot q-L(q,\dot q,t)$$ * generalized momentums : $p$ $$p = \frac{\partial L}{\partial \dot q}$$ * generalized forces : $Q$ $$Q = \dot p$$ * work : $W$ $$\dot W = Qdq$$ ## Principle of least action <div style="text-align: center;"> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Least_action_principle.svg/500px-Least_action_principle.svg.png " alt="image" width="300"> </div> $$S = \int^{t_f}_{t_i}L(q,\dot q,t)\ dt$$ $$\frac{\delta S}{\delta q} = 0$$ $$\frac{\delta S}{\delta q}\not=\frac{dS}{dq}$$