# Rotation $$\theta = \frac{S}{r}$$ * unit $1rev = 360^\circ = (2\pi) rad$ $1rad = 57.3^\circ = (0.159)rev$ ## Angle $$\Delta \theta = \theta_f-\theta_i$$ ## Angular velocity $$πœ”_{avg} = \frac{\Delta\theta}{\Delta t}$$ :::success $$πœ” = \lim_{\Delta t\to0}\frac{\Delta\theta}{\Delta t} = \frac{d\theta}{dt}$$ ::: ## Angular acceleration $$𝛼_{avg} = \frac{\Delta\theta}{\Delta t}$$ :::success $$𝛼 = \lim_{\Delta t\to0}\frac{\Deltaπœ”}{\Delta t} = \frac{dπœ”}{dt} = \frac{d^2\theta}{dt^2}$$ ::: ## rotational energy $$K = \frac{1}{2}mv^2$$ $$K = \frac{1}{2}\sum mv^2$$ $$v = rπœ”$$ $$K = \frac{1}{2}(\sum m_ir_i^2)πœ”^2$$ $$I = \sum m_ir_i^2$$ :::success $$K = \frac{1}{2}Iπœ”^2$$ ::: ## Moment of inertia :::success $$I = \sum m_ir_i^2$$ ::: $$F = ma$$ $$𝜏 = I𝛼$$ $$Fr = I\frac{a}{r}$$ $$Fr = (mr^2)\frac{a}{r}$$ * moment of inertia of different shapes > ![moment of inertia of different shapes](https://hackmd.io/_uploads/HkP6LQ8mke.png) >by University of Tennessee Knoxville ## Parallel Axis Theorem $$K_r = \frac{1}{2}Iπœ”^2$$ $$K_r^{\prime} = \frac{1}{2}I_{com}πœ”^2+\frac{1}{2}mv^2$$ $$K_r^{\prime} = \frac{1}{2}(I_{com}πœ”^2+mv^2)$$ $$K_r^{\prime} = \frac{1}{2}(I_{com}πœ”^2+m(πœ”r)^2)$$ $$K_r^{\prime} = \frac{1}{2}(I_{com}πœ”^2+m(πœ”r)^2)$$ $$K_r^{\prime} = \frac{1}{2}πœ”^2(I_{com}+mr^2)$$ $$K_r^{\prime} = \frac{1}{2}πœ”^2I^{\prime}$$ :::success $$I^{\prime} = I_{com}+mr^2$$ ::: ## Torque ![image](https://hackmd.io/_uploads/S1u5nexExx.png) * $𝜏 = Fr$ $$𝜏 = Frsin(\theta)$$ :::success $$\vec{𝜏} = \vec{r}\times \vec{F} = -\vec{F}\times \vec{r}$$ ::: if $\theta = \frac{\pi}{2}$ , then $𝜏 = Fr$ * $𝜏 = I𝛼$ $$F_𝜏 = ma_𝜏$$ $$F_𝜏r = ma_𝜏r = m𝛼r^2$$ :::success $$𝜏 = I𝛼$$ ::: * $𝜏 = \frac{dL}{dt}$ $$p = mv$$ $$\frac{dp}{dt} = F$$ $$\frac{dpr}{dt} = Fr$$ :::success $$\frac{dL}{dt} = 𝜏$$ ::: ## Rotation work $$\Delta K = K_f-K_i$$ $$\Delta K = W = \frac{1}{2}Iπœ”_f^2-\frac{1}{2}Iπœ”_i^2$$ :::success $$W = Fs = F(r\theta) = 𝜏\theta$$ $$P = FV = F(πœ”r) = πœπœ”$$ ::: ## Formula comparison * Dynamics | Linear | rotation | |:-----------------------:|:------------------------------:| | $x$ | $\theta = x/r$ | | $v = \frac{dx}{dt}$ | $πœ” = \frac{d\theta}{dt} = v/r$ | | $a = \frac{dv}{dt}$ | $𝛼 = \frac{dπœ”}{dt} = a/r$ | | $p = mv$ | $L = I\omega$ | | $m$ | $I = mr^2$ | | $F_{net} = ma$ | $𝜏_{net} = I𝛼 = Fr$ | | $W = \int F dx$ | $W = \int 𝜏 d\theta$ | | $K_L = \frac{1}{2}mv^2$ | $K_r = \frac{1}{2}Iπœ”^2$ | | $P = Fv$ | $P = πœπœ”$ | | $W = \Delta K$ | $W = \Delta K$ | * Kinematics if $a$ and $𝛼$ is a constant | Linear | rotation | |:------------------------------:|:------------------------------:| | $v = v_i+at$ | $πœ” = πœ”_i+𝛼t$ | | $x = x_i+v_it+\frac{1}{2}at^2$ | $πœƒ = πœƒ_i+\omega_it+\frac{1}{2}𝛼t^2$ | | $v^2 = v_i^2+2a(\Delta x)$ | $πœ”^2 = πœ”_i^2+2𝛼(\Delta πœƒ)$ | | $Ξ”x = \frac{1}{2}(v_i+v)t$ | $Ξ”πœƒ = \frac{1}{2}(πœ”_i+πœ”)t$ | ## Circular motion $$S = rπœƒ$$ $$v = \frac{ds}{dt} = \frac{d\theta r}{dt} = rπœ”$$ * Time $$T = \frac{2\pi r}{v} = \frac{2\pi}{πœ”}$$ * Tangential acceleration $$a_t = 𝛼r$$ * centripetal acceleration $$a_c = \frac{v^2}{r} = πœ”^2r$$