# Rotation $$\theta = \frac{S}{r}$$ * unit $1rev = 360^\circ = (2\pi) rad$ $1rad = 57.3^\circ = (0.159)rev$ ## Angle $$\Delta \theta = \theta_f-\theta_i$$ ## Angular velocity $$π_{avg} = \frac{\Delta\theta}{\Delta t}$$ :::success $$π = \lim_{\Delta t\to0}\frac{\Delta\theta}{\Delta t} = \frac{d\theta}{dt}$$ ::: ## Angular acceleration $$πΌ_{avg} = \frac{\Delta\theta}{\Delta t}$$ :::success $$πΌ = \lim_{\Delta t\to0}\frac{\Deltaπ}{\Delta t} = \frac{dπ}{dt} = \frac{d^2\theta}{dt^2}$$ ::: ## rotational energy $$K = \frac{1}{2}mv^2$$ $$K = \frac{1}{2}\sum mv^2$$ $$v = rπ$$ $$K = \frac{1}{2}(\sum m_ir_i^2)π^2$$ $$I = \sum m_ir_i^2$$ :::success $$K = \frac{1}{2}Iπ^2$$ ::: ## Moment of inertia :::success $$I = \sum m_ir_i^2$$ ::: $$F = ma$$ $$π = IπΌ$$ $$Fr = I\frac{a}{r}$$ $$Fr = (mr^2)\frac{a}{r}$$ * moment of inertia of different shapes >  >by University of Tennessee Knoxville ## Parallel Axis Theorem $$K_r = \frac{1}{2}Iπ^2$$ $$K_r^{\prime} = \frac{1}{2}I_{com}π^2+\frac{1}{2}mv^2$$ $$K_r^{\prime} = \frac{1}{2}(I_{com}π^2+mv^2)$$ $$K_r^{\prime} = \frac{1}{2}(I_{com}π^2+m(πr)^2)$$ $$K_r^{\prime} = \frac{1}{2}(I_{com}π^2+m(πr)^2)$$ $$K_r^{\prime} = \frac{1}{2}π^2(I_{com}+mr^2)$$ $$K_r^{\prime} = \frac{1}{2}π^2I^{\prime}$$ :::success $$I^{\prime} = I_{com}+mr^2$$ ::: ## Torque  * $π = Fr$ $$π = Frsin(\theta)$$ :::success $$\vec{π} = \vec{r}\times \vec{F} = -\vec{F}\times \vec{r}$$ ::: if $\theta = \frac{\pi}{2}$ , then $π = Fr$ * $π = IπΌ$ $$F_π = ma_π$$ $$F_πr = ma_πr = mπΌr^2$$ :::success $$π = IπΌ$$ ::: * $π = \frac{dL}{dt}$ $$p = mv$$ $$\frac{dp}{dt} = F$$ $$\frac{dpr}{dt} = Fr$$ :::success $$\frac{dL}{dt} = π$$ ::: ## Rotation work $$\Delta K = K_f-K_i$$ $$\Delta K = W = \frac{1}{2}Iπ_f^2-\frac{1}{2}Iπ_i^2$$ :::success $$W = Fs = F(r\theta) = π\theta$$ $$P = FV = F(πr) = ππ$$ ::: ## Formula comparison * Dynamics | Linear | rotation | |:-----------------------:|:------------------------------:| | $x$ | $\theta = x/r$ | | $v = \frac{dx}{dt}$ | $π = \frac{d\theta}{dt} = v/r$ | | $a = \frac{dv}{dt}$ | $πΌ = \frac{dπ}{dt} = a/r$ | | $p = mv$ | $L = I\omega$ | | $m$ | $I = mr^2$ | | $F_{net} = ma$ | $π_{net} = IπΌ = Fr$ | | $W = \int F dx$ | $W = \int π d\theta$ | | $K_L = \frac{1}{2}mv^2$ | $K_r = \frac{1}{2}Iπ^2$ | | $P = Fv$ | $P = ππ$ | | $W = \Delta K$ | $W = \Delta K$ | * Kinematics if $a$ and $πΌ$ is a constant | Linear | rotation | |:------------------------------:|:------------------------------:| | $v = v_i+at$ | $π = π_i+πΌt$ | | $x = x_i+v_it+\frac{1}{2}at^2$ | $π = π_i+\omega_it+\frac{1}{2}πΌt^2$ | | $v^2 = v_i^2+2a(\Delta x)$ | $π^2 = π_i^2+2πΌ(\Delta π)$ | | $Ξx = \frac{1}{2}(v_i+v)t$ | $Ξπ = \frac{1}{2}(π_i+π)t$ | ## Circular motion $$S = rπ$$ $$v = \frac{ds}{dt} = \frac{d\theta r}{dt} = rπ$$ * Time $$T = \frac{2\pi r}{v} = \frac{2\pi}{π}$$ * Tangential acceleration $$a_t = πΌr$$ * centripetal acceleration $$a_c = \frac{v^2}{r} = π^2r$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up