# Mechanics ## Newton's laws of motion 1. $\vec{F_{net}} = 0 \qquad Δ\vec{v} = 0 \qquad a = 0$ 2. $F = ma$ 3. $\vec{F_{ab}} = -\vec{F_{ba}}$ ## Laws of thermodynamics 1. $K_i+U_i+Q_i = K_f+U_f+Q_f$ 2. Entropy ( $S$ ) increases in natural processes , $dQ = T\cdot dS$ 3. $\lim_{T \to 0} S = 0$ ## Kepler's laws of planetary motion 1. the sun is at the focus of the elliptical orbit of planetary motion 2. $\frac{dA}{dt}$ is a constant 3. $\frac{T^2}{r^3}$ is comstant ## Gravity * $\frac{GMm}{r^2}$ ## Conservation of mechanical energy * $U_i+K_i = U_f+K_f$ ## Circular motion * $v = 2\pi r/t$ * $a = v^2/r$ ## Linear motion * $a = \frac{dv}{dt}$ * $v = \frac{dx}{dt}$ * $x = x_i+v_it+\frac{1}{2}at^2$ ## Momentum * $P = mv$ * $P_i = P_f$ * $J = \Delta P$ ## Free fall <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SJ5qnWgNxx.png" alt="image"width="250"> </div> * $\Delta h \propto t^2$ * $\Delta h = \frac12gt^2$ ## Torque * $𝜏 = r\times F$ ## Slope <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/B1EinWxNee.png" alt="image"width="250"> </div> * $N = mg\cdot cos\theta$ * $F_s = mg\cdot sin\theta$ ## Resistance <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/ByPnhZlNeg.png" alt="image"width="250"> </div> * $f = \mu N$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rySpn-lNex.png" alt="image"width="250"> </div> * $D_1 = Bv$ * $D_2 = \frac{1}{2}C_pAv^2$ ## Pressure * $P = \frac{F}{A}$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rJhMp-gNeg.png" alt="image"width="150"> </div> * $P = \rho g h$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkhGezeExe.png" alt="image"width="250"> </div> * $\frac{F_1}{A_1} = \frac{F_2}{A_2}$ ## Buoyancy * $F_b = \rho gV$ ## spring * $F = kx$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up