# Kinetic energy & work & potential energy ## Kinetic energy conservation unit : $1 jonle = 1 J =kg^2⋅m^2/s^2$ $$K = \frac{1}{2}mv^2$$ $$ΔK = K_f-K_i$$ $$K_f = K_i+W$$ :::success $$F_xΔx = \frac{1}{2}mv^2-\frac{1}{2}mv_i^2$$ ::: * Useful relation : $v^2 = v_i+2ax$ ## Work <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HJG6OxgEgl.png" alt="image"width="400" height="450"> </div> $$W = F_xΔx$$ $$W = \vec{F}⋅\vec{x}$$ $$W = Fcos𝜃⋅Δx$$ $$W = ΔE$$ ## Gravity work <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Syq_FeeExl.png" alt="image"width="250"> </div> $$W_g = mg⋅cos𝜃⋅Δx$$ * rise $$W_g = mg⋅cos(\pi)⋅Δx = -mg⋅Δx$$ $$W_a+W_g = 0$$ $$W_a = W_g$$ * fall $$W_g = mg⋅cos(0)⋅Δx = -mg⋅Δx$$ $$W_a-W_g = 0$$ $$W_a = -W_g$$ ## Elastic work <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/ByezFgxVll.png" alt="image"width="250"> </div> $$F = kx$$ $$W_s = Σ-ΔFx$$ $$W_s = \int_{x_i}^{x_f}-F_x, dx$$ $$W_s = \int_{x_i}^{x_f}-kx, dx$$ $$W_s = -k\int_{x_i}^{x_f}x, dx$$ $$W_s = -\frac{1}{2}kx^2 \Big|_{x_i}^{x_f} = -\frac{1}{2}kx_f^2 + \frac{1}{2}kx_i^2$$ If $x_i = 0$ :::success $$W_s = U_s = -\frac{1}{2}kx^2$$ $$ΔK = K_f-K_i = U_s$$ ::: ## Variables force <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Bk2PKxg4le.png" alt="image"width="400"> </div> $$ΔW = ΔFx$$ $$W = ΣΔW = ΣΔFx$$ $$\vec{F} = F_x\vec{i}+F_y\vec{j}+F_z\vec{k}$$ $$dr = dx\vec{i}+dy\vec{j}+dz\vec{k}$$ $$dW = F⋅dr = F_x⋅dx+F_y⋅dy+F_z⋅dz$$ $$W = \int_{r_i}^{r_f}F, dr$$ $$W = \int_{x_i}^{x_f}F_x, dx+\int_{y_i}^{y_f}F_y, dy+\int_{z_i}^{z_f}F_z, dz$$ $$W = \int_{x_i}^{x_f}F(x), dx = \int_{x_i}^{x_f}ma, dx $$ $$\frac{dv}{dt} = \frac{dV}{dx}\frac{dx}{dt}$$ $$ma⋅dx = m\frac{dv}{dt}⋅dx$$ $$ma⋅dx = m\frac{dv}{dx}\frac{dx}{dt}⋅dx = mVdV$$ :::success $$W = \int_{v_i}^{v_f}mv, dv = \frac{1}{2}m(v_f^2-v_i^2)$$ ::: (y,z) same concept repeat ## Power unit: $1watt = 1W = 1J/s = 0.738ft⋅1b/s$ $1hp = 55ft⋅1b/s = 746W$ $1kW⋅hr = 10^3W⋅3600s = 3.6⋅10^6J = 3.6MJ$ $$P = \frac{dW}{dt} = Fdx/dt$$ $$P = Fv$$ ## Conservation force ![image](https://hackmd.io/_uploads/SynXsxxVle.png) $$ΔU = -W$$ * Premise of energy conservation 1. System with multiple object 2. force acting on the particle 3. System configuration for energy transfer 4. recoverable 5. $Wi = Wf$ established and Other energy is potential energy if the condition always holds the force is conservation force * $W_{net} = 0$ * close path ## Gravitational potential energy <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BJmsAxeNxe.png" alt="image"width="200"> </div> $$ΔU = \int_{y_i}^{y_f}-mg, dy = mgy\Big|_{y_i}^{y_f}$$ $$ΔU = mg(y_f-y_i) = mgΔy$$ if $y_i = 0$ :::success $$U = mgy$$ ::: ## elastic potential energy $$ΔU = \int_{x_i}^{x_f}-kx, dx = -\frac{1}{2}kx^2\Big|_{y_i}^{y_f}$$ $$ΔU = -\frac{1}{2}k(x_f^2-x_i^2) = Δx$$ if $x_i = 0$ :::success $$U = -\frac{1}{2}kx^2$$ ::: ## Law of conservation of mechanical energy $$E = K+U$$ $$ΔK = W_K$$ $$ΔU = W_U$$ $$ΔK = ΔU$$ $$K_f-K_i = U_f-U_i$$ $$K_i+U_i = K_f+U_f$$ ## Potential energy curve ![energy](https://hackmd.io/_uploads/rkoF4Rufye.png) $$ΔU(x) = F(x)Δx$$ $$U(x)+K(x) = E(x)$$ $$K(x) = E(x)-U(x)$$ * Stable equilibrium The system resists the disturbance and returns to its original position. * Unstable equilibrium The system moves further away from its original position after the disturbance. ## External force does work on the system $$W = ΔK+ΔU$$ $$W = E_{mec}$$ $$F-f_k = ma$$ $$V^2 = v_i^2+2ax$$ $$Fx = \frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2+f_kx$$ $$Fx = ΔK+f_kx$$ $$Fx = E_{mec}+f_kx$$ $$E_{th} = f_kx$$ $$Fx = E_{mec}+E_{th}$$ ## Law of conservation of energy $$W = ΔE_{int}+ΔE_{mec}+ΔE_{th}$$ $$0 = ΔE_{int}+ΔE_{mec}+ΔE_{th}$$ $$ΔE_{mec2} = ΔE_{int}+ΔE_{mec1}+ΔE_{th}$$ $$P_{avg} = ΔE/Δt$$ :::success $$P = dE/dt$$ :::