# Entropy & Second Law of Thermodynamics * **Entropy** : the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work * Entropy is irreversible ## Entropy change definition $$S_f-S_i = \Delta S = \int_i^f\frac{dQ}{T}$$ * isotonic $$\Delta S \simeq \frac{Q}{T_{avg}}$$ ## Entropy state function $$dE_{int} = dQ-dW$$ $$dQ = PdV+nC_VdT$$ $$dQ = nR\frac{dV}{V}+nC_v\frac{dT}{T}$$ $$\int_i^f\frac{dQ}{T} = \int_i^fnR\frac{dV}{V}+\int_i^fnC_V\frac{dT}{T}$$ ## Second Law of Thermodynamics $$\Delta S \ge 0$$ * Endothermic $$\Delta S_{gas} = \frac{+|Q|}{T}$$ * Exothermic $$\Delta S_{res} = \frac{-|Q|}{T}$$ ## Heat engine <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SyEVdWgVgx.png" alt="image"width="300"> </div> It is a machine that can convert part of the heat provided by the heat source into mechanical energy output. heat $\Longrightarrow$ work $$dE_{int} = dQ-dW$$ $$W = |Q_H|-|Q_L|$$ $$\Delta S = \Delta S_H+\Delta S_L = \frac{|Q_H|}{T_H}-\frac{|Q_L|}{T_L}$$ $$\eta = \frac{|W|}{|Q_H|}$$ $$\eta = \frac{|Q_H|-|Q_L|}{|Q_H|} = 1-\frac{|Q_L|}{|Q_H|}$$ $$\eta = 1-\frac{T_L}{T_H}$$ $$\eta_c = 1-\frac{T_L}{T_H}$$ carnot Engine efficiency : $\eta_c$ $$\eta_e \le 1-\frac{T_L}{T_H}$$ Engine efficiency : $\eta_e$ ## Heat pump <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BkfS_Ze4ll.png" alt="image"width="300"> </div> A machine that uses energy to transfer heat work $\Longrightarrow$ heat $$\eta = \frac{|Q_L|}{|W|}$$ $$\eta = \frac{|Q_L|}{|Q_H|-|Q_L|}$$ $$\eta = \frac{|T_L|}{|T_H|-|T_L|}$$ ## Entropy statistics if the probability of microstate is equal $$W = \frac{N!}{n_1!n_2!}$$ * number of microstates : $W$ * number of particles : $N$ * Number of particles in different states : $n$ eg : Ground state, excited state, plasma state, Solid, liquid, gas $$S = k\ln W$$ $$S = k\ln W = \int_i^fnR\frac{dV}{V}+\int_i^fnC_V\frac{dT}{T}$$ ## Enthalpy & Free Energy Enthalpy : Represents the total heat content of the system $$H = E_{int}+PV$$ * Enthalpy : $H$ $$dH = dE_{int}+PdV+VdP$$ The degree to which heat influx increases enthalpy $$dQ = dE_{int}+PdV$$ $$dQ = dH-VdP$$ $$H = \left(\frac{\partial H}{\partial T}\right)_PdT+\left(\frac{\partial H}{\partial P}\right)_TdP$$ $$dQ = \left(\frac{\partial H}{\partial T}\right)_PdT+\left(\frac{\partial H}{\partial P}-V\right)_TdP$$ $$dQ = C_pn\Delta T $$ $$C_p = \left(\frac{\partial H}{\partial T}\right)_P$$ ## Helmholtz Free Energy The maximum work that a system can do under constant temperature and Isovolumetric condition. * Helmholtz Free Energy : $F$ $$F = E_{int}-TS$$ $$dF = -PdV-SdT$$ $$P = -\left(\frac{\partial F}{\partial V}\right)_T$$ $$S = -\left(\frac{\partial F}{\partial T}\right)_V$$ ## Gibbs Free Energy The maximum work that a system can do under constant temperature and Constant pressure condition. * Gibbs Free Energy : $G$ $$G = H-TS = E_{int}+PV-TS$$ $$dG = VP-SdT$$ $$V = \left(\frac{\partial G}{\partial P}\right)_T$$ $$S = -\left(\frac{\partial G}{\partial T}\right)_P$$ ## Maxwell's Equation * $H = H(S,P)$ * $F = F(T,V)$ * $G = G(T,P)$ * $E_{int} = E_{int}(S,V)$ 1. from internal energy: $dE_{int} = TdS-PdV$ $$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$ 2. from enthalpy: $dH = TdS+VdP$ $$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$ 3. from Helmholtz free energy: $dF = -SdT-PdV$ $$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$ 4. from Gibbs free energy: $dG = -SdT+VdP$ $$\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$$ ## consider Van der Waals force $$(P+\frac{a}{V^2})(V-b) = RT$$ * pressure : $P$ * volume : $V$ * temperature : $T$ * Gas constant : $R$ * Van der Waals constant : $a,b$ $$\left(\frac{\partial T}{\partial V}\right)_S = \frac{-a}{C_VV^2}$$