# Force & motion ## acceleration of gravity The universal gravitational constant is not the acceleration due to gravity $G = 6.6743β‹…10^{-11}β‹…(Nm^2/kg^2)$ $\not= g = \frac{GM}{R^2} = 9.8 β‹…(m/s^2)$ * When $\vec{F_{net}} = 0$ $\vec{F} = m\vec{a}$ if $\vec{a} = \vec{g}$ $$F_g = w = mg$$ $$F_{net} = 0 = F_N-w = ma$$ $$a = 0$$ $$w = mg = F_g = F_N$$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/ByJJmleVgg.png" alt="image"width="300"> </div> * When $\vec{F_{net}} \not= 0$ $$\vec{F_{net}} = F_x\vec{i}+F_y\vec{j}+F_z\vec{k}$$ $$F_{net} = F_N-F_g+F_x+F_y+F_z$$ $$a = m(a_x\vec{i}+a_y\vec{j}+a_z\vec{k})$$ ## Tension <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Hke_QllExg.png" alt="image"width="200" height="175"> <img src="https://hackmd.io/_uploads/rybDQllEge.png" alt="image"width="300" height="175"> </div> Tension : $T \qquad$ Friction : $f$ Stationary : $F_{net} =0 \qquad \vec{T} = -\vec{f}$ Moving at constant speed : $F_{net} = \vec{T}-\vec{f} = 0 \qquad \vec{T} = -\vec{f}$ Moving at constant acceleration : $F_{net} = \vec{T}+\vec{F}-\vec{f} \qquad \vec{T} = \vec{f}-\vec{F}$ ## Pulley <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SyMIVgl4le.png" alt="image"width="250" height="250"> </div> Tension : $T \qquad$ weight : $mg$ Stationary : $F_{net} =0 \qquad \vec{T} = -\vec{mg}$ Moving at constant speed : $F_{net} =0 \qquad \vec{T} = \vec{mg}$ Moving at constant acceleration : $F_{net} =T-mg \qquad a = (F-mg)/m$ ## Friction <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/B1wSvel4xl.png" alt="image"width="350" height=""> </div> * Friction of objects under different conditions There are four common conditions below <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BkSAVgl4xg.png" alt="image"width="250" height=""> </div> $F_{x} = 0$ , Stationary : $F_{netx} = f = 0 \qquad F_y = N$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/r1pMSgg4el.png" alt="image"width="250" height="250"> </div> $F_{x} \not= 0$ , Stationary : $F_x = f \qquad F_y = N$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Hy5oBexExl.png" alt="image"width="250" height=""> </div> $F_{x} \not= 0$ , Moving at constant speed : $F_x = f \qquad F_y = N$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/S1U5HllEel.png" alt="image"width="250" height=""> </div> $F_{x} \not= 0$ , Moving at constant acceleration : $F_x > f \quad F_y = N \quad F_{netx} = F_x-f \not= 0$ * Dynamic friction & static friction <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SJ4oLxxEle.png" alt="image"width="400" height=""> </div> when $v = 0$ & $F = 0 \qquad f_s = F = 0$ when $v = 0 \qquad f_s = F =$ static friction when $v = 0 \qquad f_{smax} = πœ‡_sN = πœ‡_smg =$ static friction max when $v \not= 0 \qquad f_k = πœ‡_kN = πœ‡_kmg =$ Dynamic friction ## slope & force ![image](https://hackmd.io/_uploads/SJITwelElg.png) When an object is on a slope and $πœ‡_f = 0$ $$N = mgβ‹…cosπœƒ$$ $$(mgβ‹…cosπœƒ)^2+(mgβ‹…sinπœƒ)^2 = mg$$ :::success $$a = gβ‹…sinπœƒ$$ ::: ## Damping force $$D_1 = bv$$ $$mg-bv = ma$$ $$a = g-\frac bmv$$ $$\frac{dv}{dt} = g-\frac bmv$$ $$\frac{dv}{g-bv/m} = dt$$ $$\int\frac{dv}{g-bv/m} = \int dt$$ let $u = g-\frac bmv$ , $\frac{du}{dv} = \frac{d(g-\frac bmv)}{dv}$ then $du = -\frac bmdv$ , $dv = -\frac mbdu$ $$\int\frac{dv}{g-bv/m} = -\frac mb\int\frac{du}{u}$$ $$=-\frac mbln(u)+C_1 = -\frac mbln(g-\frac bmv)+C_1$$ $$-\frac mbln(g-\frac bmv)+C_1 = t+C_2$$ let $C_1-C_2 = C'$ $$ln(g-\frac bmv) = -\frac bm(t+C')$$ $$g-\frac bmv = e^{-\frac bm(t+C')}$$ when $t = 0$ $$g = e^{bc'/m}$$ $$C' = -\frac mbln(g)$$ $$g-\frac bmv = e^{-\frac bm(t-\frac mbln(g))}$$ $$g-\frac bmv = ge^{-\frac bmt}$$ $$1-\frac {bv}{mg} = e^{-\frac bmt}$$ :::success $$v = \frac{mg}{b}(1-e^{-bt/m})$$ ::: when $a = 0$ then $v = v_T =$ Terminal velocity $$0 = g-\frac{bv_T}{m}$$ :::success $$v_T = \frac{mg}{b}$$ ::: ## Backward force & Terminal velocity <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HJoeOll4el.png" alt="image"width="220" height="300"> </div> * Air resistance : $D_2$ unit : $N = \frac{kgβ‹…m}{s^2}$ * Fluid density : $p$ * Area : $A$ * Constant : $C$ * Velocity : $v$ :::success $$D_2 = \frac{1}{2}C\rho Av^2$$ ::: when $a \not= 0$ Terminal velocity has not been reached yet when $a = 0$ then $v = v_T =$ Terminal velocity $$D_2-mg = 0$$ $$\frac{1}{2}C\rho Av_T^2-mg = 0$$ :::success $$v_T = \sqrt\frac{2mg}{C\rho A}$$ ::: ## Centripetal force & Centrifugal force ![image](https://hackmd.io/_uploads/Syu8_llVex.png) * Centripetal Force Definition : Centripetal force is the force that keeps an object moving in a circular path, directed towards the center of the circle. Direction: It always points inward, towards the center of the circular path. * Centrifugal Force Definition: Centrifugal force is a pseudo force (apparent force) experienced by an object moving in a circular path when viewed from a rotating reference frame. It acts outward, away from the center of the circle. Direction: It always points outward, away from the center of the circular path. if $\omega$ is a constant $$𝛼 = 0$$ $$a = \frac{v^2}{r}$$ $$F = ma = m\frac{v^2}{r}$$ Centripetal force $=$ Centrifugal force = $m\frac{v^2}{r}$