# Force & motion ## linear motion <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/H1B0JMeEee.png" alt="image"width="350"> </div> $$speed = \frac{path}{time} \qquad velocity = \frac{Displacement}{time}$$ $$v = \frac{dx}{dt}$$ $$a = \frac{dv}{dt}$$ $$v_f = v_i+at$$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Sk9DlGxEee.png" alt="image"width="350"> </div> $$x = x_i+v_it+\frac{1}{2}at^2$$ ## circular motion <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Sk6R1Mg4xe.png" alt="image"width="350"> </div> $$v = 2\pi/t$$ $$a = v^2/r$$ ## Rotation $$\omega = \frac{d\theta}{dt}$$ $$\alpha = \frac{d\omega}{dt}$$ $$\theta_f = \theta_i+\alpha t$$ $$\theta = theta_i+\omega_it+\frac{1}{2}\alpha t^2$$ ## Force * Newton's laws of motion 1. if $F = 0$ , then $v_i = v_f$ 2. $F = ma$ 3. $F_{ab} = -F_{ba}$ $$F = \sqrt{F_x^2+F_y^2+F_z^2}$$ ## Center of Mass & Momentum * Center of Mass $$r_{com} =\sum\frac{m_ir_i}{m_i} $$ * Momentum $$p = mv$$ * Impulse $$J = \Delta p$$ ## Elasticity $$F = kx$$ ## Friction <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Sk5kgMxVlg.png" alt="image"width="350"> </div> $$f = \mu N$$ ## Backward force $$D_1 = Bv$$ $$D_2 = \frac{1}{2}C\rho Av^2$$ ## Pressure <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkSgefx4lx.png" alt="image"width="350"> </div> $$P = \frac{F}{A}$$ ## Buoyancy $$F_b = VD$$ ## Gravity <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/r17txMgNll.png" alt="image"width="100"> </div> $$W = mg$$ $$F_g = \frac{GMm}{r^2}$$ ## Coulomb's law $$F_e = \frac{kQq}{r^2} = \frac{Qq}{4\pi\epsilon_0r^2}$$ ## Magnetism $$F_B = qv\times B$$ ## Torque $$\tau = r\times F$$ ## Work & Energy $$W = F\cdot x$$ * **kinetic energy** $$K = \frac{1}{2}mv^2$$ * **gravitational potential energy** $$U_g = gmh$$ * **Elastic potential energy** $$U_s = \frac{1}{2}kx^2$$ ## Power $$P = \frac{E}{t}$$