# Relativity ## Mass–energy equivalence $c \simeq 3\times 10^8m/s$ $E$ : energy(J) $M$ : mass(kg) $$E = mc^2$$ ## Relative length <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HySvtZlEeg.png" alt="image"width="300"> </div> $$l' = l\sqrt{1-\frac{v^2}{c^2}}$$ ## Relative mass <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkgdKZe4ll.png" alt="image"width="300"> </div> $$m' = \frac{m_0}{\sqrt{1-\frac{v2}{c2}}}$$ ## Relative time $$\Delta t' = \frac{\Delta t}{\sqrt{1-\frac{v^2}{c^2}}}$$ ## length in relativity The position is not equal to the original position plus time multiplied by time <div style="text-align: center;"> $$\vec u' = \vec u-\vec v$$ $$\vec c' = \vec c-\vec v$$ ~~u2 = u1 - v~~ c2 = c1 - ~~v~~ $$x' = x-vt$$ $$t' = t$$ ~~x2 = x1 - vt~~ ~~t2 = t1~~ </div> <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HyNNc-eEge.png" alt="image"width="300"> </div> $$i = \sqrt{-1}$$ $$x = ct \qquad x' = ct'$$ $$x^2+(cti)^2 = 0$$ $$x'^2+(ct'i)^2 = 0$$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HyNRtZgVgx.png" alt="image"width="300"> </div> $$l = \sqrt{x^2+y^2}$$ $$tan\theta = \frac{x}{y}$$ $$l\cdot sin\theta = y$$ $$l\cdot cos\theta = x$$ $$p(x,y) = (l\cdot cos\theta,l\cdot sin\theta)$$  $$x^2+y^2 = x'^2+y'^2$$ $$x' = l\cdot cos(\theta-\phi)$$ $$= l\cdot sin\theta \cdot cos\phi-l\cdot cos\theta\cdot sin\phi$$ $$= x\cdot cos\phi+y\cdot sin\phi$$ $$y' = l\cdot sin(\theta-\phi)$$ $$= l\cdot cos\theta\cdot cos\phi-l\cdot sin\theta\cdot sin\phi$$ $$= x\cdot sin\phi+y\cdot sin\phi$$ *** $$y = ict$$ $$y' = ict'$$ $$x' = x\cdot cos\phi+ict\cdot sin\phi$$ $$ict' = x\cdot sin\phi+ict\cdot sin\phi$$ $$t' = x\frac{sin\phi}{ic}+t\cdot cos\phi$$ $$x\frac{sin\phi}{i}+ct\cdot cos\phi \not= x\cdot cos\phi+ict\cdot sin\phi$$ $$ct' \not= x'$$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SJk7qWgVxx.png" alt="image"width="300"> </div> if $x = Vt$ , $0 = V0\cdot cos\phi+ic0\cdot sin\phi$ $$-v\cdot cos\phi = ic\cdot sin\phi$$ $$-v = ic\cdot tan\phi$$ $$tan\phi = \frac{-v}{ic}$$ $$1-tan^2\phi = sec^2\phi$$ $$sec\phi = \sqrt{1-tan^2\phi}$$ $$x'^2+(vt)^2 = (x-vt)^2$$ $$x' = \frac{x-vt}{\sqrt{1-tan^2\phi}}$$ :::success $$x-vt = x'\sqrt{1-(\frac{v}{c})^2}$$ ::: ## Light cone and gravity <div style="text-align: center;">   </div>
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up