# Involute equation  https://youtu.be/NIGw_dlEzQ4?si=U7IsNVaTh7h40MlH * $\overline{OB} = r$ * $\overline{OA} = r\cos\phi$ * $\overline{BA} = r\sin\phi$ * $\overline{BC} = r\theta$ * $\overline{DC} = r\phi\cos(\frac\pi2-\phi)$ * $\overline{BD} = r\phi\sin(\frac\pi2-\phi)$ $$x = r\cos\phi+r\phi\cos(\frac\pi2-\phi)$$ $$ = r (\cos\phi+r\phi\cos(\frac\pi2-\phi))$$ :::success $$x = r(\cos\phi+\phi\sin\phi)$$ ::: $$y = r\sin\phi-r\phi\sin(\frac\pi2-\phi)$$ $$ = r(\sin\phi-\phi\sin(\frac\pi2-\phi))$$ :::success $$y = r(\sin\phi-\phi\cos\phi)$$ ::: $$R = \sqrt{x^2+y^2}$$ $$= \sqrt{(r(\cos\phi+\phi\sin\phi))^2+( r(\sin\phi-\phi\cos\phi))^2}$$ $$= \sqrt{r^2\cos^2\phi+r^2\phi^2\sin^2\phi+r^2\sin^2\phi+r^2\phi^2\cos^2\phi}$$ $$= \sqrt{r^2+(r\phi)^2}$$ $$ = \sqrt{r^2+r^2\phi^2}$$ $$ = \sqrt{r^2(1+\phi^2)}$$ $$r\sqrt{(1+\phi^2)}$$ $$\frac Rr = \sqrt{1+\phi^2}$$ $$1+\phi^2 = (\frac Rr)^2$$ :::success $$\phi = \sqrt{(\frac Rr)^2-1}$$ :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up