# Roll & Angular Momentum ## Cylinder rolling ![image](https://hackmd.io/_uploads/HJhM3exEel.png) * center $$v_{com} = 𝜔r$$ * vertex $$v_{top} = 2𝜔r = 2v_{com}$$ * energy $$\frac{1}{2}mv_{com}^2+\frac{1}{2}I_{com}^2$$ ## Down hill rolling ![image](https://hackmd.io/_uploads/H1C7nll4xg.png) $$f_s = \mu mg\cdot cos\theta$$ $$F_{net} = -f_s+mg\cdot sin\theta$$ $$F_{net} = -\mu mg\cdot cos\theta-mg\cdot sin\theta$$ :::success $$a = g(sin\theta-\mu cos\theta)$$ ::: * rolling moment $$𝜏 = Fr = f_sr = r\mu mg\cdot cos\theta = I𝛼$$ $$f_s = \frac{Ia}{R^2}$$ $$a = (mg\cdot sin\theta-\frac{Ia}{R^2})/m$$ :::success $$a = g\cdot sin\theta-\frac{Ia}{mR^2}$$ ::: ## YO-YO <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Hk643gxNlx.png" alt="image"width="300"> </div> $$𝜏 = Fr = f_sr = r\mu mg\cdot cos\theta = I𝛼$$ $$f_s = \frac{Ia}{R^2}$$ $$F_{net} = mg-\frac{Ia}{R^2}$$ :::success $$a = F_{net}/m = \frac{Ia}{mR^2}+g$$ ::: ## Angular Momentum $$\vec L = \vec r\times\vec p = m(\vec r\times\vec v)$$ $$L = rmvsin\theta$$ * if $\theta = \frac{\pi}{2}$ $$L = rp = rmv = I𝜔$$ $$𝜏 = \frac{dL}{dt}$$ $$F = \frac{dL}{rdt}$$ ## Conservation of angular momentum $$L_i = L_f$$ $$I_i𝜔_i = I_f𝜔_f$$ ## Precession & Nutation <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rkdT2lx4ex.png" alt="image"width="500"> </div> angular velocity of precession : $𝜔_p$ angular velocity of spin : $𝜔_s$ The distance from the center of mass to the axis of rotation : $r$ * Angular velocity of precession $$𝜔_p = \frac{d\phi}{dt}$$ $$𝜏 = L_s𝜔_p$$ $$𝜏 = mgr\cdot sin\theta$$ $$mgr\cdot sin\theta = I𝜔_s𝜔_p$$ :::success $$𝜔_p = \frac{mgr\cdot sin\theta}{I𝜔_s}$$ $$T_p = 2\pi/𝜔_p = \frac{2\pi I𝜔_s}{mgr\cdot sin\theta} = \frac{4\pi^2 I}{T_s𝜏}$$ ::: * Angular velocity of spin if $𝜔_p >>$ 0 and $\theta = 90^o$ $$𝜏+L_p𝜔_p = L_s𝜔_p$$ $$𝜏 = L_s𝜔_p-L_p𝜔_p$$ $$mgr= I_s𝜔_s𝜔_p-I_p𝜔_p^2$$ $$𝜔_p = \frac{-I_s𝜔_s\pm\sqrt{(I_s𝜔_s)^2-4I_pmgr}}{2I_p}$$ If precession is stable $$(I_s𝜔_s)^2-4I_pmgr>0$$ :::success $$𝜔_s>\frac{2\sqrt{I_pmgr}}{I_s}$$ ::: * Angular momentum $$L_{orb} = mv_{com}r = m𝜔_pr^2$$ $$L_{spin} = I_s𝜔_s+I_p𝜔_p$$ moment of inertia in spin : $I_s$ moment of inertia in Precession : $I_p$ $$L = I_s𝜔_s+I_p𝜔_p+m𝜔_pr^2$$ * Energy $$E = U+K$$ $$U = mgr\cdot cos\theta$$ $$K = \frac{1}{2}I_s𝜔_s^2+\frac{1}{2}I_p𝜔_p^2+\frac{1}{2}mr^2𝜔_p^2$$ * Nutation ![image](https://hackmd.io/_uploads/SyzHpelEeg.png)