# Equivalent system of force ## Exteral and internal forces ![image](https://hackmd.io/_uploads/Hygou9MEgg.png) 1. exteral forces : represent the action of other bodies on the rigid body. 2. internal forces : the force which hold together the particles forming the rigid body. ## Vector product of twe vector $$V = P\times Q$$ 1. $V\perp P, V\perp Q$ 2. $|V| = |P||Q|sin(\theta)$ 3. $P\times Q = -Q\times P$ 4. $P\times(Q_1+Q_2) = P\times Q_1+P\times Q_2$ 5. $P\times (Q\times S) \not= (P\times Q)\times S$ ## Vector products expressed in terms of xyz component $$\vec x\times \vec x = 0$$ $$\vec x\times \vec y = \vec z$$ $$\vec x\times \vec z = -\vec y$$ $$V = P\times Q = (P_x\vec x+P_y\vec y+P_z\vec z)\times(Q_x\vec x+Q_y\vec y+Q_z\vec z)$$ $$V_x\vec x+V_y\vec y+V_z\vec z = (P_yQ_z-P_zQ_y)\vec x+(P_zQ_x-P_xQ_z)\vec y+(P_xQ_y-P_yQ_x)\vec z$$ $$V = P\times Q = \begin{vmatrix} \vec x &\vec y&\vec z\\ P_x&P_y&P_z\\ Q_x&Q_y&Q_z \end{vmatrix} $$ ## Moment of a force about a point $$M = r\times F$$ $$M = rFjsin(\theta) = Fd$$ ## varignon's theorem $$F_{tt} = F_1+F_2+F_3...F_n$$ $$M_{tt} = r_1\times F_1+r_2\times F_2+r_3\times F_3+...r_n\times F_n$$ ## xyz components of the moment of a force $$r = x\vec x+y\vec y+z\vec z$$ $$F = F_x\vec x+F_y\vec y+F_z\vec z$$ $$M = r\times F = \begin{vmatrix} \vec x &\vec y&\vec z\\ x&y&z\\ F_x&F_y&F_z \end{vmatrix}$$ $$M = M_x+M_y+M_z$$ $$M_x = yF_z-zF_y$$ $$M_y = zF_x-xF_z$$ $$M_z = xF_y-yF_x$$ ## Scalar product fo twe vector(dot product) $$P\cdot Q = PQcos(\theta)$$ 1. $P\cdot Q = Q\cdot P$ 2. $P\cdot(Q_1+Q_2) = P\cdot Q_1+P\cdot Q_2$ 3. $(P\cdot Q)\cdot S = P\cdot(Q\cdot S)$ ## Scalar products expressed in terms of xyz component $$\vec x\cdot\vec x = 1$$ $$\vec y\cdot\vec y = 1$$ $$\vec z\cdot\vec z = 1$$ $$\vec x\cdot\vec y = \vec y\cdot\vec x = \vec y\cdot\vec z = \vec z\cdot\vec y = \vec z\cdot\vec x = \vec x\cdot\vec z = 0$$ $$P\cdot Q = (P_x\cdot \vec x+P_y\cdot \vec y+P_z\cdot \vec z)\cdot(Q_x\cdot \vec x+Q_y\cdot \vec y+Q_z\cdot \vec z)$$ $$= P_xQ_x+P_yQ_y+P_zQ_z$$ $$P\cdot P = P_x^2+P_y^2+P_z^2 = P^2$$ $$cos(\theta) = \frac{P_xQ_x+P_yQ_y+P_zQ_z}{PQ}$$ where $P = \sqrt{P_x^2+P_y^2+P_z^2}$ , $Q = \sqrt{Q_x^2+Q_y^2+Q_z^2}$ * projection $$P_Q = \frac{P\cdot Q}{Q} = \frac{P_xQ_x+P_yQ_y+P_zQ_z}{Q}$$ ## mixed triple product of three vector * scalar : $S\cdot(P\times Q)$ * vector : $S\cdot(P\times Q)$ * volume : $U = S\cdot(P\times Q) = S\cdot V$ *** $$S\cdot(P\times Q) = P\cdot(Q\times S) = Q\cdot(S\times P)$$ $$=-S\cdot(Q\times P) = -Q\cdot(P\times S) = -P\cdot(S\times Q)$$ ![vector](https://hackmd.io/_uploads/Sy0EWfjFJl.png) $$S\cdot(P\times Q) = S\cdot V =S_x\cdot V_x+S_y\cdot V_y+S_z\cdot V_z$$ $$= S_x(P_yQ_z-P_zQ_y)+S_y(P_zQ_x-P_xQ_z)+S_z(P_xQ_y-P_yQ_x)$$ $$S\cdot(P\times Q) = \begin{vmatrix} S_x &S_y&S_z\\ P_x&P_y&P_z\\ Q_x&Q_y&Q_z \end{vmatrix}$$ ## Moment of a force about a given axis $$M = r\times F$$ $$M_\lambda = \lambda\cdot M = \lambda\cdot (r\times F)$$ $$= \begin{vmatrix} \lambda_x &\lambda_y&\lambda_z\\ x&y&z\\ F_x&F_y&F_z \end{vmatrix}$$ ## Moment of a couple $$M = r_A\times F+r_B\times(-F)$$ $$=(r_A-r_B)\times F = r\times F$$ $$M = rFsin(\theta) = Fd$$ ## Couples may be represented by vector ![couples](https://hackmd.io/_uploads/B1tbOGotyx.png) ## Equipollent system ![Equipollent system](https://hackmd.io/_uploads/BJRrMQoYyg.png) if the force $//$ y axis, then the moment about y axis is zero. $$M = r\times F$$ $$r = 0,\ M = 0$$