# Pulley ## Lever <div style="text-align: center;"> <img src="https://upload.wikimedia.org/wikipedia/commons/0/0f/Lever_%28PSF%29.png" alt="image"width="600"> </div> >https://en.wikipedia.org/wiki/Lever $$\text{IMA} = \frac WF$$ ### Class 1 lever $$\text{IMA} = \frac WF \in R$$ ### Class 2 lever $$\text{IMA} = \frac WF > 1$$ ### Class 3 lever $$\text{IMA} = \frac WF < 1$$ ## Pulley type ### Fixed pulley (Class 1 lever) $\text{IMA} = 1$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/H1_PEzYwex.png" alt="image"width="150"> </div> $$\frac WF = \frac{v_F}{v_w} = 1$$ ### Movable pulley (Class 2 lever) $\text{IMA} = 2$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkPKVfFvll.png" alt="image"width="140"> </div> $$\frac WF = \frac{v_F}{v_w} = 2$$ ### Movable pulley (Class 3 lever) $\text{IMA} = 1/2$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rykhNMKvxx.png" alt="image"width="140"> </div> $$\frac WF = \frac{v_F}{v_w} = \frac12$$ ## Block and tackle ### Gun tackle pulleys <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BkDKBGKDeg.png" alt="image"width="250"> </div> $$\text{IMA} = \frac WF =\frac {2F}{F} = 2$$ <div style="text-align: center;"> <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Tackles.png/570px-Tackles.png" alt="image"width="400"> </div> >https://en.wikipedia.org/wiki/Block_and_tackle * Number of line : $n$ $$\text{IMA} = \frac WF =\frac {nF}{F} = n$$ ### Spanish burton <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HkS8J-9Dgl.png" alt="image"width="350"> </div> $$\text{IMA} = \frac WF =\frac {2F+F}{F} = 3$$ **Multi-spanish burton** * Number of movable pulleys : $n$ $$M = 2^{(n+1)}-1$$ ### Luff upon luff <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/B1WNUGtPxl.png" alt="image"width="380"> </div> number of line : $m$,$n$ $$M = \frac WF = mn$$ ### Differential pulley block The smaller the difference between $D$ and $d$, the larger $F$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkAPJW5wle.png" alt="image"width="150"> </div> $$F(\pi D) = \frac W2(\pi D)-\frac W2(\pi d)$$ $$FD = \frac W2(D-d)$$ $$M = \frac WF = \frac{2D}{D-d}$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up