# Spring ## Hooke's Law <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HkqWqfgNxg.png" alt="image"width="300"> </div> $$F = kx$$ $$F = mg = kx$$ $$\frac{mg}{k} = x$$ ## total length $$L = x_i+x_s+x_M$$ * Original length of spring: $x_i$ * Extension of the spring due to its own weight: $x_s$ * Elongation caused by the weight: $x_M$ ## Integral solution $$\frac{mg}{k} = x$$ $$\frac{x_i}{L}+\frac{(dm+dm_s)g}{k'} = dx$$ $$k' = k\frac Lx$$ $$\lambda = \frac{m_s}{L}$$ $$dm = \frac{M}{x}$$ $$dm_s = \lambda dx = \frac{m_s}{L}dx$$ $$\frac{x_i}{L}+\frac{(\frac{M}{x}+\frac{m_s}{L}dx)g}{k\frac Lx} = dx$$ $$\frac{x_i}{L}+\frac{g}{k}(\frac ML+\frac{m_sx}{L^2}dx) = dx$$ $$\int_0^L \frac{x_i}{L}+\frac{g}{k}(\frac ML+\frac{m_sx}{L^2}dx)= \int_0^L dx$$ $$\frac{x_iL}{L}+\frac{gML}{kL}+\frac{gm_sL^2}{k2L^2} = L$$ :::success $$x_i+\frac{gM}{k}+\frac{gm_s}{k2} = L$$ * Original length of spring: $x_i$ * Extension of the spring due to its own weight: $\frac{gm_s}{k2}$ * Elongation caused by the weight: $\frac{gM}{k}$ $$m' = m_s/2$$ ::: ## Simple Harmonic Oscillation $$K = \frac{1}{2}mv^2$$ $$\int_0^L \frac{1}{2} \left( \frac{m_s}{L} \right) \left( \frac{x}{L} v \right)^2 dx = \frac{m_s v^2}{2L^3} \int_0^L x^2 dx$$ $$K_s = \frac{1}{6} m_s v_m^2$$ $$\frac12kr^2 = K+K_s = \frac12Mv^2+\frac16m_sv^2$$ $$\frac{v^2}{r^2} = \omega^2 = \frac{k}{\frac{1}{3}m_3+M}$$ $$T = 2\pi/\omega$$ :::success $$T = 2\pi\sqrt{\frac{M+\frac{m_s}{3}}{k}}$$ :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up