# Wave interference ## Principle of superposition of waves $$y'(x,t) = y_1(x,t)+y_2(x,t)$$ $$y_1(x,t) = y_msin(kx-\omega t)$$ $$y_2(x,t) = y_msin(kx-\omega t+\phi)$$ $$y'(x,t) = y_msin(kx-\omega t)+y_msin(kx-\omega t+\phi)$$ * $\sin A + \sin B = 2 \sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)$ $$y'(x,t) = 2y_m\sin\left( \frac{kx-\omega t+kx-\omega t+\phi}{2} \right) \cos \left( \frac{kx-\omega t-(kx-\omega t+\phi)}{2} \right)$$ :::success $$y'(x,t)= 2y_m\sin(kx-\omega t+\frac{\phi}{2})\cos(-\frac{\phi}{2})$$ $$y'_m = 2y_mcos(-\frac{\phi}{2})$$ ::: if $\phi = 0$ $$y'(x,t) = 2y_m\sin(kx-\omega t)$$ if $\phi = n\pi$ and $n$ is a natural number $$y'(x,t) = 0$$ ## Wave graph ![Wave_superposition](https://hackmd.io/_uploads/S1eFzad981l.jpg) ## Phase and offset $$y_1(x,t) = y_msin(kd_1-\omega t)$$ $$y_2(x,t) = y_msin(kd_2-\omega t)$$ $$y'(x,t) = y_msin(kx-\omega t+\phi)$$ $$y'(x,t) =2y_mcos(k\frac{d_1-d_2}{2})sin(-\omega t+k\frac{d_1+d_2}{2})$$ $$k = \frac{2\pi}{\lambda} \qquad f = \frac{\omega}{2\pi}$$ $$y'(x,t) =2y_mcos(\pi\frac{d_1-d_2}{\lambda})sin(-2\pi f t+\pi\frac{d_1+d_2}{\lambda})$$ $$\phi = \pi\frac{d_1-d_2}{\lambda}$$ :::success * strongest $d_1-d_2 = nk\lambda$ and $n$ is a natural number * weakest $d_1-d_2 = n(k+\frac12)\lambda$ and $n$ is a natural number ::: ## stationary wave $$y_1(x,t) = y_msin(kx-\omega t)$$ $$y_2(x,t) = y_msin(kx+\omega t)$$ $$y'(x,t) = y_1(x,t)+y_2(x,t)$$ $$= y_msin(kx-\omega t)+y_msin(kx+\omega t)$$ :::success $$y'(x,t) = 2y_msin(kx)cos(\omega t)$$ Node : A node is a point along a standing wave where the wave has minimum amplitude. $kx = n\pi$ and $n$ is a natural number $\lambda = n\frac\lambda2$ and $n$ is a natural number ::: ## Border reflection * fixed : opposite direction * moveable : same direction ## standing wave resonance $$f = \frac v\lambda = n\frac v{2L}$$ * $n$ is a natural number