# Kinetic theory of gases ## Mole $$n = \frac{N}{N_{A}}$$ * number of moles : $n$ * Number of particles : $N$ * Avogadro constant : $N_A = 6.02\times 10^{23}$ $$M = N_Am = \frac{N}{n}m$$ * mass : $m$ * molar mass : $M$ $$N_A = \frac Nn$$ $$m = M\frac{n}{N} = \frac M{N_A}$$ ## Ideal gas law $$PV = nRT$$ * pressure : $P$ * volume : $V$ * number of moles : $n$ * gas constant : $R = 8.31J/mol\cdot K$ * temperature : $T$ $$k = \frac R{N_A} = \frac{8.31J/mol\cdot K}{6.02\times 10^{23}mol^{-1}} = 1.3\times 10^{-23}J/K$$ Boltzmann constant : $k$ $$PV = NkT$$ $$P = \frac{nRT}{V}$$ ## Ideal gas work $$W = \int_{V_i}^{V_f}PdV = \int_{V_i}^{V_f}\frac{nRT}{V}dV$$ $$= nRT\int_{V_i}^{V_f}\frac{dV}{V}$$ $$= nRT(ln(V_df)-ln(V_i))$$ $$= nRT\cdot ln(\frac{V_f}{V_i})$$ ## Root mean square speed Gas can move in all directions 1. Left ($x_+$) 1. Right ($x_-$) 1. Front($y_+$) 1. back($y_-$) 1. up($z_+$) 1. down($z_-$) Assume $x_+ = x_- = y_+ = y_- = z_+ = z_-$ $$v_{x_+} = \frac {x_+}t = v$$ Because of different particles, $v_+$ &$v_-$ cannot be added together. $$p_x = mv_x = m\frac xt$$ $$F_x = \frac{dp_x}{dt} = \frac{mx}{t^2} = \frac{mv_x^2}{x}$$ * momentum of x : $p_x$ $$v_x^2 = v_{x_+}^2+v_{x_-}^2 = 2v^2$$ Use $v^2$ to prevent directional issues $$F_x = \frac{2mv^2}{x}$$ Assume $F_x = F_y = F_z$ $$F = F_x+F_y+F_z$$ $$F_x = F_y = F_z = \frac13F$$ $$F = \frac13\frac{2mv^2}{x}+\frac13\frac{2mv^2}{y}+\frac13\frac{2mv^2}{z}$$ assume that the volume is symmetrical about its three dimensions. $$x = y = z = L$$ * length : $L$ $$F = \frac{2mv^2}{L}$$ $$P = N\frac F{A_{xyz}} = \frac{2mv^2}{L}\frac N{A_{xyz}}$$ * pressure : $P$ * Number of particles : $N$ * Surface area of $xyz$ : $A_{xyz}$ $$A_{xyz} = 2xy+2yz+2xz = 6L^2$$ let $L^2 = A$ , then $A_{xyz} = 6A$ $$P = N\frac F{6A} = \frac{2mv^2}{L}\frac N{6A}$$ $$P = \frac{mv^2}{L}\frac N{3A}$$ $$V = LA$$ $$PV = \frac N3mv^2$$ $$PV = NkT$$ $$NkT = \frac N3mv^2$$ $$kT = \frac m3v^2$$ $$\frac{3kT}{m} = v^2$$ $$\sqrt{\frac{3kT}{m}} = v$$ $$PV = NkT = nRT$$ $$\frac Nn = \frac{RT}{kT} = M$$ * molar mass : $M$ $$v_{rms} = \sqrt{\frac{3RT}{M}}$$ * Root mean square velocity : $v_{rms}$ ## gas kinetic energy $$K = \frac12mv^2$$ * kinetic energy : $K$ $$v_{avg}^2 = \frac{3kT}{m}$$ $$K = N\frac12m\frac{3kT}{m}$$ * number of particles : $N$ $$K = \frac{3N}2kT$$ ## mean free path mean free path is the average distance over which a moving particle travels before substantially changing its direction. $$\lambda = \frac{\text {path length}}{\text {number of collisions}}$$ $$\lambda = \frac lN$$ * mean free path : $\lambda$ * There are as many collisions as there are particles $N$. $$N = V\frac NV$$ $$v_{1}\Delta t = l$$ * path length : $l$ * The velocity of particle 1 : $v_1$ When the two particles collide, the distance between them is $r+r = 2r = d$ $$A = \pi d^2$$ $$V = Av_{rel}\Delta t$$ * relative velocity : $v_{rel}$ $$V = Av_{rel}\Delta t = \pi d^2v_{rel}\Delta t$$ assume $|v_1| = |v_2| = |v_{rms}|$ $$(\vec v_1-\vec v_2)^2 = \vec v_1^2+\vec v_2^2-2\vec v_1\cdot \vec v_2$$ In equilibrium $v_1$ & $v_2$ are uncorrelated,v_{rms} therefore assume $\vec v_1\cdot \vec v_2 \simeq 0$ $$(\vec v_1-\vec v_2)^2 \simeq \vec v_1^2+\vec v_2^2 = 2(v_{rms}^2)$$ $$v_{rel}^2 \simeq (v_1-v_2)^2 = 2(v_{rms}^2)$$ $$v_{rel} \simeq \sqrt{2(v_{rms}^2)} = \sqrt2v_{rms}$$ $$V = \pi d^2\sqrt2v_{rms}\Delta t$$ $$\lambda = \frac {v_{1}\Delta t}{N\frac VN} = \frac {v_{rms}\Delta t}{V\frac NV}$$ $$\lambda = \frac {v_{rms}\Delta t}{\pi d^2\sqrt2v_{rms}\Delta t\frac NV} = \frac {1}{\pi d^2\sqrt2\frac NV}$$ $$PV = NkT$$ $$N/V = P/kT$$ $$N = (P/kT)V$$ $$\lambda = \frac {V}{\pi d^2\sqrt2N} = \frac {V}{\pi d^2\sqrt2(P/kT)V}$$ $$\lambda = \frac {1}{\pi d^2\sqrt2(P/kT)} = \frac {kT}{\sqrt2\pi d^2P}$$ ## [Maxwell–Boltzmann distribution](https://hackmd.io/BL9CLkpUQY-TAHmx-w0Z3g) * Maxwell–Boltzmann distribution is a Probability density function (PDF). $$f(v) = (\frac{m}{2\pi kT})^{\frac{3}{2}}4\pi v^2e^{(-mv^2/2kT)}$$ ### Most probable speed (by Maxwell–Boltzmann distribution) The maximum value occurs when the slope is 0 $$\frac{df(v)}{dv} = 0$$ $$((\frac{m}{2\pi kT})^{\frac{3}{2}}4\pi)\frac{d v^2e^{(-mv^2/2kT)}}{dv} = 0$$ $$\frac{d v^2e^{(-mv^2/2kT)}}{dv} = 0$$ let $-mv^2/2kT = u$ $$\frac{du}{dv} = \frac{-mv}{kT} = $$ $$\frac{d v^2e^{u}}{dv} = 2ve^{u}+v^2e^{u}u' = 0$$ $$2ve^{u}+v^2e^{u}\frac{-mv}{kT} = e^{u}v(2+\frac{-mv^2}{kT}) =0$$ $$2+\frac{-mv^2}{kT} = 0$$ $$2 = \frac{mv^2}{kT}$$ $$v^2 = \frac{2kT}{m}$$ $$v_{p} = \sqrt{\frac{2kT}{m}}$$ $$PV = NkT = nRT$$ $$\frac Nn = \frac{RT}{kT} = M$$ * molar mass : $M$ $$v_{rms} = \sqrt{\frac{2RT}{M}}$$ ### Average speed (by Maxwell–Boltzmann distribution) $$v_{avg} = \sum_{i=1}^{n} v_i \cdot P_i$$ * Probability : $P$ $$ P(a \leq v \leq b) = \int_a^b f(v) \, dv $$ $$v_{avg} = \int_0^\infty vf(v)dv$$ $$v_{avg} = \int_0^\infty v(\frac{m}{2\pi kT})^{3/2}4\pi v^2e^{(-mv^2/2kT)} dv$$ $$v_{avg} = (\frac{m}{2 \pi kT})^{3/2}4\pi\int_0^\infty v^3e^{(-mv^2/2kT)}dv$$ let $u = \frac{mv^2}{2kT}$ then $v = \sqrt{\frac{2kT}{m}u}$ $$dv = \frac{d}{du}\sqrt{\frac{2kT}{m}}(\sqrt{u})du = \sqrt{\frac{2kT}{m}}(\frac{1}{2\sqrt{u}})du$$ $$dv = \sqrt{\frac{kT}{2m}}(\frac{1}{\sqrt{u}})du$$ $$v_{avg} = (\frac{m}{2 \pi kT})^{3/2}4\pi\int_0^\infty (\sqrt{\frac{2kT}{m}u})^3e^{(-u)}\sqrt{\frac{kT}{2m}}(\frac{1}{\sqrt{u}})du$$ $$v_{avg} = (\frac{m}{2 \pi kT})^{3/2}4\pi(\frac{2kT}{m})^{3/2}(\frac{kT}{2m})^{1/2}\int_0^\infty(u)^{3/2}e^{(-u)}(\frac{1}{\sqrt{u}})du$$ $$\int_0^\infty(u)^{3/2}e^{(-u)}(\frac{1}{\sqrt{u}})du = \int_0^\infty ue^{(-u)}du$$ * by Gamma function $(\Gamma)$ , $\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt = (n-1)!$ $$v_{avg} = (\frac{8kT}{m\pi})^{1/2}\times\Gamma(2)$$ $$v_{avg} = (\frac{8kT}{m\pi})^{1/2}\times1!$$ $$v_{avg} = \sqrt{\frac{8RT}{\pi m}}$$ $$PV = NkT = nRT$$ $$\frac Nn = \frac{RT}{kT} = M$$ * molar mass : $M$ $$v_{rms} = \sqrt{\frac{8RT}{\pi M}}$$ ### Root mean square speed(by Maxwell–Boltzmann distribution) $$v_{rms} = \sqrt{v^2} = (\int_0^\infty v^2f(v)dv)^{1/2}$$ $$v_{rms}^2 = \int_0^\infty v^2(\frac{m}{2\pi kT})^{3/2}4\pi v^2e^{(-mv^2/2kT)} dv$$ $$v_{rms}^2 = (\frac{m}{2\pi kT})^{3/2}4\pi \int_0^\infty v^4e^{(-mv^2/2kT)} dv$$ let $u = \frac{mv^2}{2kT}$ then $v = \sqrt{\frac{2kT}{m}u}$ $$dv = \sqrt{\frac{kT}{2m}}(\frac{1}{\sqrt{u}})du$$ $$v_{rms}^2 = (\frac{m}{2\pi kT})^{3/2}4\pi \int_0^\infty (\frac{2kT}{m})^2u^2e^{-u} \sqrt{\frac{kT}{2m}}u^{-1/2}du$$ $$v_{rms}^2 = (\frac{m}{2\pi kT})^{3/2}4\pi\sqrt{\frac{kT}{2m}}(\frac{2kT}{m})^2 \int_0^\infty u^{3/2}e^{-u}du$$ $$v_{rms}^2 = \pi^{-3/2}\pi(\frac{kT}{m})^{-3/2}(\frac{kT}{m})^{1/2}(\frac{kT}{m})^22^22^{1/2}2^{-3/2}2^2 \int_0^\infty u^{3/2}e^{-u}du$$ $$v_{rms}^2 = \pi^{(-3/2+1)}(\frac{kT}{m})^{(-3/2+1/2+2)}2^{(2-1/2-3/2+2)}\int_0^\infty u^{3/2}e^{-u}du$$ $$v_{rms}^2 = \pi^{-1/2}(\frac{kT}{m})2^2\int_0^\infty u^{3/2}e^{-u}du$$ * by Gamma function $(\Gamma)$ , $\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt = (n-1)!$ $$v_{rms}^2 = \pi^{-1/2}(\frac{kT}{m})2^2\Gamma(\frac52)$$ * by Gamma function $(\Gamma)$ , $\Gamma(n+1) =n\Gamma(n)$ $$\Gamma(\frac52) = \frac32\Gamma(\frac32)$$ $$\Gamma(\frac32) = \frac12\Gamma(\frac12)$$ * by Gamma function $(\Gamma)$ , $\Gamma(\frac12) = \sqrt{\pi}$ $$\Gamma(\frac52) = \frac32\frac12\sqrt{\pi} = \frac34\sqrt{\pi}$$ $$v_{rms}^2 = \pi^{-1/2}(\frac{kT}{m})2^2\frac34\sqrt{\pi}$$ $$v_{rms}^2 = \frac{3kT}{m}$$ $$v_{rms} = \sqrt{\frac{3kT}{m}}$$ $$PV = NkT = nRT$$ $$\frac Nn = \frac{RT}{kT} = M$$ * molar mass : $M$ $$v_{rms} = \sqrt{\frac{3RT}{M}}$$ ## Ideal gas specific heat (monatomic ideal gas) **Isochoric Process** : the volume of the system remains constant. so $\Delta V = 0$ and $E_{int} = Q$ $$PV = NkT$$ $$E_{int} = K = \frac32NkT = \frac12Nmv^2$$ * change in internal energy : $E_{int}$ * kinetic energy : $K$ $$PV = \frac23K = \frac{Nmv^2}{3}$$ $$E_{int} = K = \frac32NkT = \frac32nRT = \frac32PV$$ $$\Delta E_{int} = Q = C_Vn\Delta T$$ * The Specific heat capacity at constant volume : $C_V$ $$\Delta E_{int} = C_Vn\Delta T = \frac{3}{2}Nk\Delta T $$ $$C_V = \frac{3}{2}\frac{Nk}{n}$$ * because of $Nk = nR$ $$C_V = \frac{3Nk}{n2} = \frac{3}{2}R$$ **Adiabatic Process** : No heat is exchanged with the surroundings. so $PV = NkT$ is a constant. $$ \Delta E_{int} = Q - W $$ First Laws of Thermodynamics : $Q = \Delta E_{int} + P \Delta V$ $$ Q = \Delta E_{int} + P \Delta V = \frac{3}{2} n R \Delta T + n R \Delta T $$ $$C_pn\Delta T = \frac{3}{2}nR\Delta T+n R \Delta T$$ $$C_P = \frac{5}{2}R$$ $$C_P = C_V+R$$ ## Degrees of freedom and molar heat capacity | Molecule | Gas | Movement | Rotation | Degrees of Freedom($f$) | |:----------:|:-------------:|:--------:|:--------:|:-----------------------:| | monatomic | $\text{He}$ | 3 | 0 | 3 | | diatomic | $\text{O}_2$ | 3 | 2 | 5 | | polyatomic | $\text{CH}_4$ | 3 | 3 | 6 $+f_v$ | Vibration Degrees of freedom ($f_v$) (Polyatomic molecules) Nonlinear Molecules : $f_v = 3N-6$ Linear molecules : $f_v = 3N-5$ $$C_V = \frac{f}{2}R$$ $$C_P = C_V+R$$ $$C_P = \frac{f}{2}R+R$$ ## Temperature vs Degrees of Freedom ![Tf graph](https://i.sstatic.net/706T7.png) ## Ideal gas adiabatic expansion $$PV^{\gamma} = \text{constant}$$ $$\frac{nRT}{V}V^{\gamma} = \text{constant}$$ * $n\ \And\ R$ are constant $$TV^{\gamma-1} = \text{constant}$$